
C
o
n
si

st

en
t *

Complete

* W
e
ll d

o
cu

m
ented * Easy to

 re
u
se

 *
 * E

valuate

d

*

 R
TN

S
 *

Artifact

Response Time Analysis of Synchronous Data Flow Programs on a Many-Core
Processor

Hamza Rihani, Matthieu Moy, Claire Maiza, Robert I. Davis, Sebastian Altmeyer

RTNS’16, October 19, 2016

Execution of Synchronous Data Flow Programs

τ1

NA
τ2

NB
τ3

NC

τ4

ND

τ5

NE
τ6

NF

i1

i2

o

High level representation

3 Respect the dependency
constraints

3 Set the release dates to get
precise upper bounds
on the interference

code generation

Single-core

static non-preemptive scheduling

� �
int main_app(i1, i2)
{

na = NA(i1);
ne = NE(i2);
nb = NB(na);
nd = ND(na);
nf = NF(ne);
o = NC(nb,nd,nf);
return o;

}� �

2 / 21

Execution of Synchronous Data Flow Programs

τ1

NA
τ2

NB
τ3

NC

τ4

ND

τ5

NE
τ6

NF

i1

i2

o

High level representation

3 Respect the dependency
constraints

3 Set the release dates to get
precise upper bounds
on the interference

code generation

Multi/Many-core

static non-preemptive scheduling

int NF(...)
{
// task τ6

return (...);
}

int NE(...)
{
// task τ5

return (...);
}

int ND(...)
{
// task τ4

return (...);
}

int NC(...)
{
// task τ3

return (...);
}

int NB(...)
{
// task τ2

return (...);
}

int NA(...)
{
// task τ1

return (...);
}

PE2

PE1

PE0 wcrt0

τ0

wcrt1

τ1

wcrt2

τ2

wcrt3

τ3

wcrt4

τ4

wcrt5

τ5

2 / 21

Execution of Synchronous Data Flow Programs

τ1

NA
τ2

NB
τ3

NC

τ4

ND

τ5

NE
τ6

NF

i1

i2

o

High level representation

3 Respect the dependency
constraints

3 Set the release dates to get
precise upper bounds
on the interference

code generation

Multi/Many-core

static non-preemptive scheduling

int NF(...)
{
// task τ6

return (...);
}

int NE(...)
{
// task τ5

return (...);
}

int ND(...)
{
// task τ4

return (...);
}

int NC(...)
{
// task τ3

return (...);
}

int NB(...)
{
// task τ2

return (...);
}

int NA(...)
{
// task τ1

return (...);
}

PE2

PE1

PE0 wcrt0

τ0

wcrt1

τ1

wcrt2

τ2

wcrt3

τ3

wcrt4

τ4

wcrt5

τ5

2 / 21

Execution of Synchronous Data Flow Programs

τ1

NA
τ2

NB
τ3

NC

τ4

ND

τ5

NE
τ6

NF

i1

i2

o

High level representation

3 Respect the dependency
constraints

3 Set the release dates to get
precise upper bounds
on the interference

code generation

Multi/Many-core

static non-preemptive scheduling

int NF(...)
{
// task τ6

return (...);
}

int NE(...)
{
// task τ5

return (...);
}

int ND(...)
{
// task τ4

return (...);
}

int NC(...)
{
// task τ3

return (...);
}

int NB(...)
{
// task τ2

return (...);
}

int NA(...)
{
// task τ1

return (...);
}

PE2

PE1

PE0 wcrt0

τ0

wcrt1

τ1

wcrt2

τ2

wcrt3

τ3

wcrt4

τ4

wcrt5

τ5

2 / 21

Contributions

1 Precise accounting for interference on shared resources in a many-core processor

t

P0

y

00 40 80

ü task of interest

2 Model of a multi-level arbiter to the shared memory

P0 P1

P2 P3

P4 P5

P6 P7

RM

NoC Rx

P8 P9

P10 P11

P12 P13

P14 P15

DSU

NoC Tx

8
sh

ar
ed

m
em

or
y

ba
nk

s 8
shared

m
em

ory
banks

3 Response time and release dates analysis respecting dependencies.

3 / 21

Contributions

1 Precise accounting for interference on shared resources in a many-core processor

t

P0

y

00 40 80

ü task of interest

2 Model of a multi-level arbiter to the shared memory

P0 P1

P2 P3

P4 P5

P6 P7

RM

NoC Rx

P8 P9

P10 P11

P12 P13

P14 P15

DSU

NoC Tx

8
sh

ar
ed

m
em

or
y

ba
nk

s 8
shared

m
em

ory
banks

3 Response time and release dates analysis respecting dependencies.

3 / 21

Contributions

1 Precise accounting for interference on shared resources in a many-core processor

t

P0

y

00 40 80

ü task of interest

2 Model of a multi-level arbiter to the shared memory

P0 P1

P2 P3

P4 P5

P6 P7

RM

NoC Rx

P8 P9

P10 P11

P12 P13

P14 P15

DSU

NoC Tx

8
sh

ar
ed

m
em

or
y

ba
nk

s 8
shared

m
em

ory
banks

3 Response time and release dates analysis respecting dependencies.

3 / 21

Outline

1 Motivation and Context

2 Models Definition
Architecture Model
Execution Model
Application Model

3 Multicore Response Time Analysis of SDF Programs

4 Evaluation

5 Conclusion and Future Work

4 / 21

Outline

1 Motivation and Context

2 Models Definition
Architecture Model
Execution Model
Application Model

3 Multicore Response Time Analysis of SDF Programs

4 Evaluation

5 Conclusion and Future Work

5 / 21

Architecture Model

I/
O

Et
he
rn
et

0 I/O
Ethernet

1

I/O DDR 0

I/O DDR 1

◦ Kalray MPPA 256 Bostan

◦ 16 compute clusters + 4 I/O clusters

◦ Dual NoC

Rx

Tx

DSU

RM

P15

P0

RR
3→1

RR
16→1

RR
2→1

FP
shared
memory
bank

high priority
G3

G2

G1core
D$

I$

RR
2→1

6 / 21

Architecture Model
I/
O

Et
he
rn
et

0 I/O
Ethernet

1

I/O DDR 0

I/O DDR 1

P0 P1

P2 P3

P4 P5

P6 P7

RM

NoC Rx

P8 P9

P10 P11

P12 P13

P14 P15

DSU

NoC Tx

8
sh

ar
ed

m
em

or
y

ba
nk

s 8
shared

m
em

ory
banks

Per cluster:
◦ 16 cores + 1 Resource Manager

◦ NoC Tx, NoC Rx, Debug Unit

◦ 16 shared memory banks (total size: 2 MB)

◦ Multi-level bus arbiter per memory bank

Rx

Tx

DSU

RM

P15

P0

RR
3→1

RR
16→1

RR
2→1

FP
shared
memory
bank

high priority
G3

G2

G1core
D$

I$

RR
2→1

6 / 21

Architecture Model
I/
O

Et
he
rn
et

0 I/O
Ethernet

1

I/O DDR 0

I/O DDR 1

P0 P1

P2 P3

P4 P5

P6 P7

RM

NoC Rx

P8 P9

P10 P11

P12 P13

P14 P15

DSU

NoC Tx

8
sh

ar
ed

m
em

or
y

ba
nk

s 8
shared

m
em

ory
banks

Per cluster:
◦ 16 cores + 1 Resource Manager

◦ NoC Tx, NoC Rx, Debug Unit

◦ 16 shared memory banks (total size: 2 MB)

◦ Multi-level bus arbiter per memory bank

Rx

Tx

DSU

RM

P15

P0

RR
3→1

RR
16→1

RR
2→1

FP
shared
memory
bank

high priority
G3

G2

G1

core
D$

I$

RR
2→1

6 / 21

Architecture Model
I/
O

Et
he
rn
et

0 I/O
Ethernet

1

I/O DDR 0

I/O DDR 1

P0 P1

P2 P3

P4 P5

P6 P7

RM

NoC Rx

P8 P9

P10 P11

P12 P13

P14 P15

DSU

NoC Tx

8
sh

ar
ed

m
em

or
y

ba
nk

s 8
shared

m
em

ory
banks

Per cluster:
◦ 16 cores + 1 Resource Manager

◦ NoC Tx, NoC Rx, Debug Unit

◦ 16 shared memory banks (total size: 2 MB)

◦ Multi-level bus arbiter per memory bank

Rx

Tx

DSU

RM

P15

P0

RR
3→1

RR
16→1

RR
2→1

FP
shared
memory
bank

high priority
G3

G2

G1core
D$

I$

RR
2→1

6 / 21

Execution Model

τ1

NA
τ2

NB
τ3

NC

τ4

ND

τ5

NE
τ6

NF

i1

i2

o

P0 P1

P2 P3

P4 P5

P6 P7

RM

NoC Rx

P8 P9

P10 P11

P12 P13

P14 P15

DSU

NoC Tx

8
sh

ar
ed

m
em

or
y

ba
nk

s 8
shared

m
em

ory
banks

P0

P1

P2

arbiter

arbiter

arbiter

b0

b1

b2

memory bank
(128 KB)

◦ Tasks mapping on cores
◦ Static non-preemptive scheduling
◦ Spatial Isolation

different tasks go to different memory banks

◦ Interference from communications
◦ Execution model:

◦ execute in a “local” bank
◦ write to a “remote” bank

Single phase: execute and write data.

memory access pattern

Two phases: execute then write data.

memory access pattern

7 / 21

Execution Model

τ1

NA
τ2

NB
τ3

NC

τ4

ND

τ5

NE
τ6

NF

i1

i2

o

P0 P1

P2 P3

P4 P5

P6 P7

RM

NoC Rx

P8 P9

P10 P11

P12 P13

P14 P15

DSU

NoC Tx

8
sh

ar
ed

m
em

or
y

ba
nk

s 8
shared

m
em

ory
banks

P0

P1

P2

arbiter

arbiter

arbiter

b0

b1

b2

memory bank
(128 KB)

◦ Tasks mapping on cores
◦ Static non-preemptive scheduling

◦ Spatial Isolation
different tasks go to different memory banks

◦ Interference from communications
◦ Execution model:

◦ execute in a “local” bank
◦ write to a “remote” bank

Single phase: execute and write data.

memory access pattern

Two phases: execute then write data.

memory access pattern

7 / 21

Execution Model

τ1

NA
τ2

NB
τ3

NC

τ4

ND

τ5

NE
τ6

NF

i1

i2

o

P0 P1

P2 P3

P4 P5

P6 P7

RM

NoC Rx

P8 P9

P10 P11

P12 P13

P14 P15

DSU

NoC Tx

8
sh

ar
ed

m
em

or
y

ba
nk

s 8
shared

m
em

ory
banks

P0

P1

P2

arbiter

arbiter

arbiter

b0

b1

b2

memory bank
(128 KB)

◦ Tasks mapping on cores
◦ Static non-preemptive scheduling
◦ Spatial Isolation

different tasks go to different memory banks

◦ Interference from communications
◦ Execution model:

◦ execute in a “local” bank
◦ write to a “remote” bank

Single phase: execute and write data.

memory access pattern

Two phases: execute then write data.

memory access pattern

7 / 21

Execution Model

τ1

NA
τ2

NB
τ3

NC

τ4

ND

τ5

NE
τ6

NF

i1

i2

o

P0 P1

P2 P3

P4 P5

P6 P7

RM

NoC Rx

P8 P9

P10 P11

P12 P13

P14 P15

DSU

NoC Tx

8
sh

ar
ed

m
em

or
y

ba
nk

s 8
shared

m
em

ory
banks

P0

P1

P2

arbiter

arbiter

arbiter

b0

b1

b2

memory bank
(128 KB)

◦ Tasks mapping on cores
◦ Static non-preemptive scheduling
◦ Spatial Isolation

different tasks go to different memory banks

◦ Interference from communications

◦ Execution model:
◦ execute in a “local” bank
◦ write to a “remote” bank

Single phase: execute and write data.

memory access pattern

Two phases: execute then write data.

memory access pattern

7 / 21

Execution Model

τ1

NA
τ2

NB
τ3

NC

τ4

ND

τ5

NE
τ6

NF

i1

i2

o

P0 P1

P2 P3

P4 P5

P6 P7

RM

NoC Rx

P8 P9

P10 P11

P12 P13

P14 P15

DSU

NoC Tx

8
sh

ar
ed

m
em

or
y

ba
nk

s 8
shared

m
em

ory
banks

P0

P1

P2

arbiter

arbiter

arbiter

b0

b1

b2

memory bank
(128 KB)

◦ Tasks mapping on cores
◦ Static non-preemptive scheduling
◦ Spatial Isolation

different tasks go to different memory banks

◦ Interference from communications
◦ Execution model:

◦ execute in a “local” bank
◦ write to a “remote” bank

Single phase: execute and write data.

memory access pattern

Two phases: execute then write data.

memory access pattern

7 / 21

Execution Model

τ1

NA
τ2

NB
τ3

NC

τ4

ND

τ5

NE
τ6

NF

i1

i2

o

P0 P1

P2 P3

P4 P5

P6 P7

RM

NoC Rx

P8 P9

P10 P11

P12 P13

P14 P15

DSU

NoC Tx

8
sh

ar
ed

m
em

or
y

ba
nk

s 8
shared

m
em

ory
banks

P0

P1

P2

arbiter

arbiter

arbiter

b0

b1

b2

memory bank
(128 KB)

◦ Tasks mapping on cores
◦ Static non-preemptive scheduling
◦ Spatial Isolation

different tasks go to different memory banks

◦ Interference from communications
◦ Execution model:

◦ execute in a “local” bank
◦ write to a “remote” bank

Single phase: execute and write data.

memory access pattern

Two phases: execute then write data.

memory access pattern

7 / 21

Application Model

τ1

NA
τ2

NB
τ3

NC

τ4

ND

τ5

NE
τ6

NF

i1

i2

o ◦ Direct Acyclic Task Graph

◦ Mono-rate (or at least harmonic rates)

◦ Fixed mapping and execution order

Each task τi:
◦ Processor Demand, Memory Demand

◦ Release date (reli), response time (Ri)

t

00 40 80 120 160

Processor Demand

Memory access time

reli

Interference

E

E
0

ü Find Ri (including the interference)
ü Find reli respecting precedence constraints

8 / 21

Application Model

τ1

NA
τ2

NB
τ3

NC

τ4

ND

τ5

NE
τ6

NF

i1

i2

o ◦ Direct Acyclic Task Graph

◦ Mono-rate (or at least harmonic rates)

◦ Fixed mapping and execution order

Each task τi:

◦ Processor Demand, Memory Demand

◦ Release date (reli), response time (Ri)

t

00 40 80 120 160

Processor Demand

Memory access time

reli

Interference

E

E
0

ü Find Ri (including the interference)
ü Find reli respecting precedence constraints

8 / 21

Application Model

τ1

NA
τ2

NB
τ3

NC

τ4

ND

τ5

NE
τ6

NF

i1

i2

o ◦ Direct Acyclic Task Graph

◦ Mono-rate (or at least harmonic rates)

◦ Fixed mapping and execution order

Each task τi:
◦ Processor Demand, Memory Demand

◦ Release date (reli), response time (Ri)

t

00 40 80 120 160

Processor Demand

Memory access time

reli

Interference

E

E
0

ü Find Ri (including the interference)
ü Find reli respecting precedence constraints

8 / 21

Application Model

τ1

NA
τ2

NB
τ3

NC

τ4

ND

τ5

NE
τ6

NF

i1

i2

o ◦ Direct Acyclic Task Graph

◦ Mono-rate (or at least harmonic rates)

◦ Fixed mapping and execution order

Each task τi:
◦ Processor Demand, Memory Demand

◦ Release date (reli), response time (Ri)

t

00 40 80 120 160

Processor Demand

Memory access time

reli

Ri

Isolation

Interference

E

E
0

ü Find Ri (including the interference)
ü Find reli respecting precedence constraints

8 / 21

Application Model

τ1

NA
τ2

NB
τ3

NC

τ4

ND

τ5

NE
τ6

NF

i1

i2

o ◦ Direct Acyclic Task Graph

◦ Mono-rate (or at least harmonic rates)

◦ Fixed mapping and execution order

Each task τi:
◦ Processor Demand, Memory Demand

◦ Release date (reli), response time (Ri)

t

00 40 80 120 160

Processor Demand

Memory access time

reli

Ri

Interference

E

E
0

ü Find Ri (including the interference)
ü Find reli respecting precedence constraints

8 / 21

Application Model

τ1

NA
τ2

NB
τ3

NC

τ4

ND

τ5

NE
τ6

NF

i1

i2

o ◦ Direct Acyclic Task Graph

◦ Mono-rate (or at least harmonic rates)

◦ Fixed mapping and execution order

Each task τi:
◦ Processor Demand, Memory Demand

◦ Release date (reli), response time (Ri)

t

00 40 80 120 160

Processor Demand

Memory access time

reli

Ri

Interference

E

E
0

ü Find Ri (including the interference)
ü Find reli respecting precedence constraints

8 / 21

Outline

1 Motivation and Context

2 Models Definition
Architecture Model
Execution Model
Application Model

3 Multicore Response Time Analysis of SDF Programs

4 Evaluation

5 Conclusion and Future Work

9 / 21

Response Time Analysis

R = PD + IBUS(R)

+ IPROC(R) + IDRAM (R)

◦ Response Time

◦ Processor Demand
◦ Bus Interference
(given a model of the bus arbiter)
◦ Interference from preempting tasks

(no preemption: IPROC = 0)
◦ Interference from DRAM refreshes

(out of scope. IDRAM = 0)

◦ Recursive formula ⇒ fixed-point algorithm.
◦ Multiple shared resources (memory banks)

IBUS(R) =
∑
b∈B

IBUS
b (R)

where B: a set of memory banks

ü Requires a model of the bus arbiter

10 / 21

Response Time Analysis

R = PD + IBUS(R)

+ IPROC(R) + IDRAM (R)

◦ Response Time
◦ Processor Demand

◦ Bus Interference
(given a model of the bus arbiter)
◦ Interference from preempting tasks

(no preemption: IPROC = 0)
◦ Interference from DRAM refreshes

(out of scope. IDRAM = 0)

◦ Recursive formula ⇒ fixed-point algorithm.
◦ Multiple shared resources (memory banks)

IBUS(R) =
∑
b∈B

IBUS
b (R)

where B: a set of memory banks

ü Requires a model of the bus arbiter

10 / 21

Response Time Analysis

R = PD + IBUS(R)

+ IPROC(R) + IDRAM (R)

◦ Response Time
◦ Processor Demand

◦ Bus Interference
(given a model of the bus arbiter)

◦ Interference from preempting tasks

(no preemption: IPROC = 0)
◦ Interference from DRAM refreshes

(out of scope. IDRAM = 0)

◦ Recursive formula ⇒ fixed-point algorithm.
◦ Multiple shared resources (memory banks)

IBUS(R) =
∑
b∈B

IBUS
b (R)

where B: a set of memory banks

ü Requires a model of the bus arbiter

10 / 21

Response Time Analysis

R = PD + IBUS(R) + IPROC(R) + IDRAM (R)

◦ Response Time
◦ Processor Demand

◦ Bus Interference
(given a model of the bus arbiter)
◦ Interference from preempting tasks

(no preemption: IPROC = 0)
◦ Interference from DRAM refreshes

(out of scope. IDRAM = 0)

◦ Recursive formula ⇒ fixed-point algorithm.
◦ Multiple shared resources (memory banks)

IBUS(R) =
∑
b∈B

IBUS
b (R)

where B: a set of memory banks

ü Requires a model of the bus arbiter

10 / 21

Response Time Analysis

R = PD + IBUS(R) + IPROC(R) + IDRAM (R)

◦ Response Time
◦ Processor Demand

◦ Bus Interference
(given a model of the bus arbiter)
◦ Interference from preempting tasks

(no preemption: IPROC = 0)
◦ Interference from DRAM refreshes

(out of scope. IDRAM = 0)

◦ Recursive formula ⇒ fixed-point algorithm.

◦ Multiple shared resources (memory banks)

IBUS(R) =
∑
b∈B

IBUS
b (R)

where B: a set of memory banks

ü Requires a model of the bus arbiter

10 / 21

Response Time Analysis

R = PD + IBUS(R) + IPROC(R) + IDRAM (R)

◦ Response Time
◦ Processor Demand

◦ Bus Interference
(given a model of the bus arbiter)
◦ Interference from preempting tasks

(no preemption: IPROC = 0)
◦ Interference from DRAM refreshes

(out of scope. IDRAM = 0)

◦ Recursive formula ⇒ fixed-point algorithm.
◦ Multiple shared resources (memory banks)

IBUS(R) =
∑
b∈B

IBUS
b (R)

where B: a set of memory banks

ü Requires a model of the bus arbiter

10 / 21

Response Time Analysis

R = PD + IBUS(R) + IPROC(R) + IDRAM (R)

◦ Response Time
◦ Processor Demand

◦ Bus Interference
(given a model of the bus arbiter)
◦ Interference from preempting tasks

(no preemption: IPROC = 0)
◦ Interference from DRAM refreshes

(out of scope. IDRAM = 0)

◦ Recursive formula ⇒ fixed-point algorithm.
◦ Multiple shared resources (memory banks)

IBUS(R) =
∑
b∈B

IBUS
b (R)

where B: a set of memory banks

ü Requires a model of the bus arbiter

10 / 21

Response Time Analysis

R = PD + IBUS(R) + IPROC(R) + IDRAM (R)

◦ Response Time
◦ Processor Demand

◦ Bus Interference
(given a model of the bus arbiter)
◦ Interference from preempting tasks

(no preemption: IPROC = 0)
◦ Interference from DRAM refreshes

(out of scope. IDRAM = 0)

◦ Recursive formula ⇒ fixed-point algorithm.
◦ Multiple shared resources (memory banks)

IBUS(R) =
∑
b∈B

IBUS
b (R)

where B: a set of memory banks

ü Requires a model of the bus arbiter

10 / 21

Model of the MPPA Bus

Rx

Tx

DSU

RM

P15

P1

P0

Lv1

ü

RR
3→1

RR
16→1

Lv2

RR
2→1

Lv3

FP

Lv4

Shared
Memory
Bank

high priority
G3

G2

G1

IBUSb : delay from all accesses + concurrent ones

Sb
i : number of accesses of task τi to bank b

Sb
i = Memory Demand to bank b

A
y,b
i : number of concurrent accesses from core y to bank b

A
y,b
i =

∑
overlapping concurrent accesses

Lv1 = Sb
i

Lv2 = Lv1 +
15∑

y=1
min(A

y,b
i ,Lv1)

Lv3 = Lv2 + min(AG2,b
i ,Lv2)

Lv4 = Lv4 + AG3,b
i

IBUS
b = Lv4 ×Bus Delay

t

P0

y

00 40 80

ü task of interest

B Ay,b
i depends on reli and Ri

AG2, b
i

AG3, b
i

E

0E

11 / 21

Model of the MPPA Bus

Rx

Tx

DSU

RM

P15

P1

P0

Lv1

ü

RR
3→1

RR
16→1

Lv2

RR
2→1

Lv3

FP

Lv4

Shared
Memory
Bank

high priority
G3

G2

G1

IBUSb : delay from all accesses + concurrent ones

Sb
i : number of accesses of task τi to bank b

Sb
i = Memory Demand to bank b

A
y,b
i : number of concurrent accesses from core y to bank b

A
y,b
i =

∑
overlapping concurrent accesses

Lv1 = Sb
i

Lv2 = Lv1 +
15∑

y=1
min(A

y,b
i ,Lv1)

Lv3 = Lv2 + min(AG2,b
i ,Lv2)

Lv4 = Lv4 + AG3,b
i

IBUS
b = Lv4 ×Bus Delay

t

P0

y

00 40 80

ü task of interest

B Ay,b
i depends on reli and Ri

AG2, b
i

AG3, b
i

E

0E

11 / 21

Model of the MPPA Bus

Rx

Tx

DSU

RM

P15

P1

P0

Lv1

ü

RR
3→1

RR
16→1

Lv2

RR
2→1

Lv3

FP

Lv4

Shared
Memory
Bank

high priority
G3

G2

G1

IBUSb : delay from all accesses + concurrent ones

Sb
i : number of accesses of task τi to bank b

Sb
i = Memory Demand to bank b

A
y,b
i : number of concurrent accesses from core y to bank b

A
y,b
i =

∑
overlapping concurrent accesses

Lv1 = Sb
i

Lv2 = Lv1 +
15∑

y=1
min(A

y,b
i ,Lv1)

Lv3 = Lv2 + min(AG2,b
i ,Lv2)

Lv4 = Lv4 + AG3,b
i

IBUS
b = Lv4 ×Bus Delay

t

P0

y

00 40 80

ü task of interest

B Ay,b
i depends on reli and Ri

AG2, b
i

AG3, b
i

E

0E

11 / 21

Model of the MPPA Bus

Rx

Tx

DSU

RM

P15

P1

P0

Lv1

ü

RR
3→1

RR
16→1

Lv2

RR
2→1

Lv3

FP

Lv4

Shared
Memory
Bank

high priority
G3

G2

G1

IBUSb : delay from all accesses + concurrent ones

Sb
i : number of accesses of task τi to bank b

Sb
i = Memory Demand to bank b

A
y,b
i : number of concurrent accesses from core y to bank b

A
y,b
i =

∑
overlapping concurrent accesses

Lv1 = Sb
i

Lv2 = Lv1 +
15∑

y=1
min(A

y,b
i ,Lv1)

Lv3 = Lv2 + min(AG2,b
i ,Lv2)

Lv4 = Lv4 + AG3,b
i

IBUS
b = Lv4 ×Bus Delay

t

P0

y

00 40 80

ü task of interest

B Ay,b
i depends on reli and Ri

AG2, b
i

AG3, b
i

E

0E

11 / 21

Model of the MPPA Bus

Rx

Tx

DSU

RM

P15

P1

P0

Lv1

ü

RR
3→1

RR
16→1

Lv2

RR
2→1

Lv3

FP

Lv4

Shared
Memory
Bank

high priority
G3

G2

G1

IBUSb : delay from all accesses + concurrent ones

Sb
i : number of accesses of task τi to bank b

Sb
i = Memory Demand to bank b

A
y,b
i : number of concurrent accesses from core y to bank b

A
y,b
i =

∑
overlapping concurrent accesses

Lv1 = Sb
i

Lv2 = Lv1 +
15∑

y=1
min(A

y,b
i ,Lv1)

Lv3 = Lv2 + min(AG2,b
i ,Lv2)

Lv4 = Lv4 + AG3,b
i

IBUS
b = Lv4 ×Bus Delay

t

P0

y

00 40 80

ü task of interest

B Ay,b
i depends on reli and Ri

AG2, b
i

AG3, b
i

E

0E

11 / 21

Model of the MPPA Bus

Rx

Tx

DSU

RM

P15

P1

P0

Lv1

ü

RR
3→1

RR
16→1

Lv2

RR
2→1

Lv3

FP

Lv4

Shared
Memory
Bank

high priority
G3

G2

G1

IBUSb : delay from all accesses + concurrent ones

Sb
i : number of accesses of task τi to bank b

Sb
i = Memory Demand to bank b

A
y,b
i : number of concurrent accesses from core y to bank b

A
y,b
i =

∑
overlapping concurrent accesses

Lv1 = Sb
i

Lv2 = Lv1 +
15∑

y=1
min(A

y,b
i ,Lv1)

Lv3 = Lv2 + min(AG2,b
i ,Lv2)

Lv4 = Lv4 + AG3,b
i

IBUS
b = Lv4 ×Bus Delay

t

P0

y

00 40 80

ü task of interest

B Ay,b
i depends on reli and Ri

AG2, b
i

AG3, b
i

E

0E

11 / 21

Model of the MPPA Bus

Rx

Tx

DSU

RM

P15

P1

P0

Lv1

ü

RR
3→1

RR
16→1

Lv2

RR
2→1

Lv3

FP

Lv4

Shared
Memory
Bank

high priority
G3

G2

G1

IBUSb : delay from all accesses + concurrent ones

Sb
i : number of accesses of task τi to bank b

Sb
i = Memory Demand to bank b

A
y,b
i : number of concurrent accesses from core y to bank b

A
y,b
i =

∑
overlapping concurrent accesses

Lv1 = Sb
i

Lv2 = Lv1 +
15∑

y=1
min(A

y,b
i ,Lv1)

Lv3 = Lv2 + min(AG2,b
i ,Lv2)

Lv4 = Lv4 + AG3,b
i

IBUS
b = Lv4 ×Bus Delay

t

P0

y

00 40 80

ü task of interest

B Ay,b
i depends on reli and Ri

AG2, b
i

AG3, b
i

E

0E

11 / 21

Model of the MPPA Bus

Rx

Tx

DSU

RM

P15

P1

P0

Lv1

ü

RR
3→1

RR
16→1

Lv2

RR
2→1

Lv3

FP

Lv4

Shared
Memory
Bank

high priority
G3

G2

G1

IBUSb : delay from all accesses + concurrent ones

Sb
i : number of accesses of task τi to bank b

Sb
i = Memory Demand to bank b

A
y,b
i : number of concurrent accesses from core y to bank b

A
y,b
i =

∑
overlapping concurrent accesses

Lv1 = Sb
i

Lv2 = Lv1 +
15∑

y=1
min(A

y,b
i ,Lv1)

Lv3 = Lv2 + min(AG2,b
i ,Lv2)

Lv4 = Lv4 + AG3,b
i

IBUS
b = Lv4 ×Bus Delay

t

P0

y

00 40 80

ü task of interest

B Ay,b
i depends on reli and Ri

AG2, b
i

AG3, b
i

E

0E

11 / 21

Response Time Analysis with Dependencies

PE2

PE1

PE0
τ0 τ1 τ2

τ3

τ4 τ5

τ0 τ1 τ2

τ3

τ4 τ5

1 Start with initial release dates.

2 Compute response times

... a fixed-point is reached!

3 Update the release dates.

4 Repeat until no release date changes

(another fixed-point iteration).

WCRT analysis
for all i do

Rl+1
i ←PDi + IBUS(Rl

i,reli)
end for

1 initial reli

initial rel 0
i

Rl+1
i 6= Rl

i

2
Rl+1

i 6= Rl
i

Update release dates
for all i do
reli ← latest finish time of all the de-
pendencies
end for

3

Ri

2Ri
new reli
repeat

4

new reli
repeate

reli did not change
Return: (reli,Ri)

4

12 / 21

Response Time Analysis with Dependencies

PE2

PE1

PE0
τ0 τ1 τ2

τ3

τ4 τ5

τ0 τ1 τ2

τ3

τ4 τ5

1 Start with initial release dates.

2 Compute response times

...

... ... a fixed-point is reached!
3 Update the release dates.

4 Repeat until no release date changes

(another fixed-point iteration).

WCRT analysis
for all i do

Rl+1
i ←PDi + IBUS(Rl

i,reli)
end for

1 initial reli

initial rel 0
i

Rl+1
i 6= Rl

i

2

Rl+1
i 6= Rl

i

Update release dates
for all i do
reli ← latest finish time of all the de-
pendencies
end for

3

Ri

2Ri
new reli
repeat

4

new reli
repeate

reli did not change
Return: (reli,Ri)

4

12 / 21

Response Time Analysis with Dependencies

PE2

PE1

PE0
τ0 τ1 τ2

τ3

τ4 τ5

τ0 τ1 τ2

τ3

τ4 τ5

1 Start with initial release dates.

2 Compute response times

... ...

... a fixed-point is reached!
3 Update the release dates.

4 Repeat until no release date changes

(another fixed-point iteration).

WCRT analysis
for all i do

Rl+1
i ←PDi + IBUS(Rl

i,reli)
end for

1 initial reli

initial rel 0
i

Rl+1
i 6= Rl

i

2

Rl+1
i 6= Rl

i

Update release dates
for all i do
reli ← latest finish time of all the de-
pendencies
end for

3

Ri

2Ri
new reli
repeat

4

new reli
repeate

reli did not change
Return: (reli,Ri)

4

12 / 21

Response Time Analysis with Dependencies

PE2

PE1

PE0
τ0 τ1 τ2

τ3

τ4 τ5

τ0 τ1 τ2

τ3

τ4 τ5

1 Start with initial release dates.

2 Compute response times

... a fixed-point is reached!

3 Update the release dates.

4 Repeat until no release date changes

(another fixed-point iteration).

WCRT analysis
for all i do

Rl+1
i ←PDi + IBUS(Rl

i,reli)
end for

1 initial reli

initial rel 0
i

Rl+1
i 6= Rl

i

2

Rl+1
i 6= Rl

i

Update release dates
for all i do
reli ← latest finish time of all the de-
pendencies
end for

3

Ri

2

Ri
new reli
repeat

4

new reli
repeate

reli did not change
Return: (reli,Ri)

4

12 / 21

Response Time Analysis with Dependencies

PE2

PE1

PE0
τ0 τ1 τ2

τ3

τ4 τ5

τ0 τ1 τ2

τ3

τ4 τ5

1 Start with initial release dates.

2 Compute response times

... a fixed-point is reached!
3 Update the release dates.

4 Repeat until no release date changes

(another fixed-point iteration).

WCRT analysis
for all i do

Rl+1
i ←PDi + IBUS(Rl

i,reli)
end for

1 initial reli

initial rel 0
i

Rl+1
i 6= Rl

i

2

Rl+1
i 6= Rl

i

Update release dates
for all i do
reli ← latest finish time of all the de-
pendencies
end for

3

Ri

2

Ri

new reli
repeat

4

new reli
repeate

reli did not change
Return: (reli,Ri)

4

12 / 21

Response Time Analysis with Dependencies

PE2

PE1

PE0

τ0 τ1 τ2

τ3

τ4 τ5

τ0 τ1 τ2

τ3

τ4 τ5

1 Start with initial release dates.

2 Compute response times

... a fixed-point is reached!
3 Update the release dates.

4 Repeat until no release date changes

(another fixed-point iteration).

WCRT analysis
for all i do

Rl+1
i ←PDi + IBUS(Rl

i,reli)
end for

1 initial reli

initial rel 0
i

Rl+1
i 6= Rl

i

2

Rl+1
i 6= Rl

i

Update release dates
for all i do
reli ← latest finish time of all the de-
pendencies
end for

3

Ri

2

Ri
new reli
repeat

4

new reli
repeate

reli did not change
Return: (reli,Ri)

4

12 / 21

Response Time Analysis with Dependencies

PE2

PE1

PE0

τ0 τ1 τ2

τ3

τ4 τ5

τ0 τ1 τ2

τ3

τ4 τ5

1 Start with initial release dates.

2 Compute response times

... a fixed-point is reached!
3 Update the release dates.

4 Repeat until no release date changes

(another fixed-point iteration).

WCRT analysis
for all i do

Rl+1
i ←PDi + IBUS(Rl

i,reli)
end for

1 initial reli

initial rel 0
i

Rl+1
i 6= Rl

i

2

Rl+1
i 6= Rl

i

Update release dates
for all i do
reli ← latest finish time of all the de-
pendencies
end for

3

Ri

2

Ri

new reli
repeat

4

new reli
repeate

reli did not change
Return: (reli,Ri)

4

12 / 21

Convergence Toward a Fixed-point

PE2

PE1

PE0

t t
final release date

t
final release date

t
final release date

t
final release date

τ0 τ1 τ2

τ3

τ4 τ5

τ0 τ1 τ2

τ3

τ4 τ5

◦ Convergence of the 1st fixed-point iteration:

◦ Monotonic and bounded 3

◦ Convergence of the 2nd fixed-point iteration:

◦ no monotonicity: Ri and reli may grow or shrink at
each iteration. ?

Theorem
At each iteration, at least one task finds its final release date.

Full proof in our technical report:
http://www-verimag.imag.fr/TR/TR-2016-1.pdf

WCRT analysis
for all i do

Rl+1
i ←PDi + IBUS(Rl

i,reli)
end for

initial rel 0
i Rl+1

i 6= Rl
i

Rl+1
i 6= Rl

i

Update release dates
for all i do
reli ← latest finish time of all the de-
pendencies
end for

Ri

Ri

new reli
repeat

new reli
repeate

reli did not change
Return: (reli,Ri)

13 / 21

http://www-verimag.imag.fr/TR/TR-2016-1.pdf

Convergence Toward a Fixed-point

PE2

PE1

PE0

t t
final release date

t
final release date

t
final release date

t
final release date

τ0 τ1 τ2

τ3

τ4 τ5

τ0 τ1 τ2

τ3

τ4 τ5

◦ Convergence of the 1st fixed-point iteration:

◦ Monotonic and bounded 3

◦ Convergence of the 2nd fixed-point iteration:

◦ no monotonicity: Ri and reli may grow or shrink at
each iteration. ?

Theorem
At each iteration, at least one task finds its final release date.

Full proof in our technical report:
http://www-verimag.imag.fr/TR/TR-2016-1.pdf

WCRT analysis
for all i do

Rl+1
i ←PDi + IBUS(Rl

i,reli)
end for

initial rel 0
i Rl+1

i 6= Rl
i

Rl+1
i 6= Rl

i

Update release dates
for all i do
reli ← latest finish time of all the de-
pendencies
end for

Ri

Ri

new reli
repeat

new reli
repeate

reli did not change
Return: (reli,Ri)

13 / 21

http://www-verimag.imag.fr/TR/TR-2016-1.pdf

Convergence Toward a Fixed-point

PE2

PE1

PE0

t t
final release date

t
final release date

t
final release date

t
final release date

τ0 τ1 τ2

τ3

τ4 τ5

τ0 τ1 τ2

τ3

τ4 τ5

◦ Convergence of the 1st fixed-point iteration:

◦ Monotonic and bounded 3

◦ Convergence of the 2nd fixed-point iteration:

◦ no monotonicity: Ri and reli may grow or shrink at
each iteration. ?

Theorem
At each iteration, at least one task finds its final release date.

Full proof in our technical report:
http://www-verimag.imag.fr/TR/TR-2016-1.pdf

WCRT analysis
for all i do

Rl+1
i ←PDi + IBUS(Rl

i,reli)
end for

initial rel 0
i

Rl+1
i 6= Rl

i

Rl+1
i 6= Rl

i

Update release dates
for all i do
reli ← latest finish time of all the de-
pendencies
end for

Ri

Ri

new reli
repeat

new reli
repeate

reli did not change
Return: (reli,Ri)

13 / 21

http://www-verimag.imag.fr/TR/TR-2016-1.pdf

Convergence Toward a Fixed-point

PE2

PE1

PE0

t t
final release date

t
final release date

t
final release date

t
final release date

τ0 τ1 τ2

τ3

τ4 τ5

τ0 τ1 τ2

τ3

τ4 τ5

◦ Convergence of the 1st fixed-point iteration:

◦ Monotonic and bounded 3

◦ Convergence of the 2nd fixed-point iteration:
◦ no monotonicity: Ri and reli may grow or shrink at

each iteration. ?

Theorem
At each iteration, at least one task finds its final release date.

Full proof in our technical report:
http://www-verimag.imag.fr/TR/TR-2016-1.pdf

WCRT analysis
for all i do

Rl+1
i ←PDi + IBUS(Rl

i,reli)
end for

initial rel 0
i

Rl+1
i 6= Rl

i

Rl+1
i 6= Rl

i

Update release dates
for all i do
reli ← latest finish time of all the de-
pendencies
end for

Ri

Ri

new reli
repeat

new reli
repeate

reli did not change
Return: (reli,Ri)

13 / 21

http://www-verimag.imag.fr/TR/TR-2016-1.pdf

Convergence Toward a Fixed-point

PE2

PE1

PE0

t t
final release date

t
final release date

t
final release date

t
final release date

τ0 τ1 τ2

τ3

τ4 τ5

τ0 τ1 τ2

τ3

τ4 τ5

◦ Convergence of the 1st fixed-point iteration:

◦ Monotonic and bounded 3

◦ Convergence of the 2nd fixed-point iteration:
◦ no monotonicity: Ri and reli may grow or shrink at

each iteration. ?

Theorem
At each iteration, at least one task finds its final release date.

Full proof in our technical report:
http://www-verimag.imag.fr/TR/TR-2016-1.pdf

WCRT analysis
for all i do

Rl+1
i ←PDi + IBUS(Rl

i,reli)
end for

initial rel 0
i

Rl+1
i 6= Rl

i

Rl+1
i 6= Rl

i

Update release dates
for all i do
reli ← latest finish time of all the de-
pendencies
end for

Ri

Ri

new reli
repeat

new reli
repeate

reli did not change
Return: (reli,Ri)

13 / 21

http://www-verimag.imag.fr/TR/TR-2016-1.pdf

Convergence Toward a Fixed-point

PE2

PE1

PE0

t

t
final release date

t
final release date

t
final release date

t
final release date

τ0 τ1 τ2

τ3

τ4 τ5

τ0 τ1 τ2

τ3

τ4 τ5

◦ Convergence of the 1st fixed-point iteration:

◦ Monotonic and bounded 3

◦ Convergence of the 2nd fixed-point iteration:
◦ no monotonicity: Ri and reli may grow or shrink at

each iteration. ?

Theorem
At each iteration, at least one task finds its final release date.

Full proof in our technical report:
http://www-verimag.imag.fr/TR/TR-2016-1.pdf

WCRT analysis
for all i do

Rl+1
i ←PDi + IBUS(Rl

i,reli)
end for

initial rel 0
i

Rl+1
i 6= Rl

i

Rl+1
i 6= Rl

i

Update release dates
for all i do
reli ← latest finish time of all the de-
pendencies
end for

Ri

Ri

new reli
repeat

new reli
repeate

reli did not change
Return: (reli,Ri)

13 / 21

http://www-verimag.imag.fr/TR/TR-2016-1.pdf

Convergence Toward a Fixed-point

PE2

PE1

PE0

t

t
final release date

t
final release date

t
final release date

t
final release date

τ0 τ1 τ2

τ3

τ4 τ5

τ0 τ1 τ2

τ3

τ4 τ5

◦ Convergence of the 1st fixed-point iteration:

◦ Monotonic and bounded 3

◦ Convergence of the 2nd fixed-point iteration:
◦ no monotonicity: Ri and reli may grow or shrink at

each iteration. ?

Theorem
At each iteration, at least one task finds its final release date.

Full proof in our technical report:
http://www-verimag.imag.fr/TR/TR-2016-1.pdf

WCRT analysis
for all i do

Rl+1
i ←PDi + IBUS(Rl

i,reli)
end for

initial rel 0
i

Rl+1
i 6= Rl

i

Rl+1
i 6= Rl

i

Update release dates
for all i do
reli ← latest finish time of all the de-
pendencies
end for

Ri

Ri

new reli
repeat

new reli
repeate

reli did not change
Return: (reli,Ri)

13 / 21

http://www-verimag.imag.fr/TR/TR-2016-1.pdf

Convergence Toward a Fixed-point

PE2

PE1

PE0

t t
final release date

t
final release date

t
final release date

t
final release date

τ0 τ1 τ2

τ3

τ4 τ5

τ0 τ1 τ2

τ3

τ4 τ5

◦ Convergence of the 1st fixed-point iteration:

◦ Monotonic and bounded 3

◦ Convergence of the 2nd fixed-point iteration:
◦ no monotonicity: Ri and reli may grow or shrink at

each iteration. ?

Theorem
At each iteration, at least one task finds its final release date.

Full proof in our technical report:
http://www-verimag.imag.fr/TR/TR-2016-1.pdf

WCRT analysis
for all i do

Rl+1
i ←PDi + IBUS(Rl

i,reli)
end for

initial rel 0
i

Rl+1
i 6= Rl

i

Rl+1
i 6= Rl

i

Update release dates
for all i do
reli ← latest finish time of all the de-
pendencies
end for

Ri

Ri

new reli
repeat

new reli
repeate

reli did not change
Return: (reli,Ri)

13 / 21

http://www-verimag.imag.fr/TR/TR-2016-1.pdf

Convergence Toward a Fixed-point

PE2

PE1

PE0

t t
final release date

t
final release date

t
final release date

t
final release date

τ0 τ1 τ2

τ3

τ4 τ5

τ0 τ1 τ2

τ3

τ4 τ5

◦ Convergence of the 1st fixed-point iteration:

◦ Monotonic and bounded 3

◦ Convergence of the 2nd fixed-point iteration:
◦ no monotonicity: Ri and reli may grow or shrink at

each iteration. ?

Theorem
At each iteration, at least one task finds its final release date.

Full proof in our technical report:
http://www-verimag.imag.fr/TR/TR-2016-1.pdf

WCRT analysis
for all i do

Rl+1
i ←PDi + IBUS(Rl

i,reli)
end for

initial rel 0
i

Rl+1
i 6= Rl

i

Rl+1
i 6= Rl

i

Update release dates
for all i do
reli ← latest finish time of all the de-
pendencies
end for

Ri

Ri

new reli
repeat

new reli
repeate

reli did not change
Return: (reli,Ri)

13 / 21

http://www-verimag.imag.fr/TR/TR-2016-1.pdf

Convergence Toward a Fixed-point

PE2

PE1

PE0

t t
final release date

t
final release date

t
final release date

t
final release date

τ0 τ1 τ2

τ3

τ4 τ5

τ0 τ1 τ2

τ3

τ4 τ5

◦ Convergence of the 1st fixed-point iteration:

◦ Monotonic and bounded 3

◦ Convergence of the 2nd fixed-point iteration:
◦ no monotonicity: Ri and reli may grow or shrink at

each iteration. ?

Theorem
At each iteration, at least one task finds its final release date.

Full proof in our technical report:
http://www-verimag.imag.fr/TR/TR-2016-1.pdf

WCRT analysis
for all i do

Rl+1
i ←PDi + IBUS(Rl

i,reli)
end for

initial rel 0
i

Rl+1
i 6= Rl

i

Rl+1
i 6= Rl

i

Update release dates
for all i do
reli ← latest finish time of all the de-
pendencies
end for

Ri

Ri

new reli
repeat

new reli
repeate

reli did not change
Return: (reli,Ri)

13 / 21

http://www-verimag.imag.fr/TR/TR-2016-1.pdf

Outline

1 Motivation and Context

2 Models Definition
Architecture Model
Execution Model
Application Model

3 Multicore Response Time Analysis of SDF Programs

4 Evaluation

5 Conclusion and Future Work

14 / 21

Evaluation: ROSACE Case Study 1

va_filter
(100Hz)

q_filter
(100Hz)

vz_filter
(100Hz)

az_filter
(100Hz)

h_filter
(100Hz)

altitude
(50Hz)

vz_control
(50Hz)

va_control
(50Hz)va (200Hz)

q (200Hz)

vz (200Hz)

az (200Hz)

h (200Hz)

δec

δthe

Rx

Tx

P4

P3

P2

P1

P0 va_filter

100 Hz

va_control

50 Hz

va_filter

100 Hz

q_filter

100 Hz

q_filter

100 Hz

vz_filter

100 Hz

vz_filter

100 Hz

az_filter

100 Hz

az_filter

100 Hz

h_filter

100 Hz

altitude
50 Hz

vz_control

50 Hz

h_filter

100 Hz

transmit
50 Hz

receive
200 Hz

receive
200 Hz

receive
200 Hz

receive
200 Hz

Hyper-period

◦ Flight management system controller

◦ Receive from sensors and transmit to actuators
◦ Assumptions:

Tasks are mapped on 5 cores
Debug Support Unit is disabled
Context switches are over-approximated constants

1 Pagetti et al., RTAS 2014
15 / 21

Evaluation: ROSACE Case Study 1

va_filter
(100Hz)

q_filter
(100Hz)

vz_filter
(100Hz)

az_filter
(100Hz)

h_filter
(100Hz)

altitude
(50Hz)

vz_control
(50Hz)

va_control
(50Hz)va (200Hz)

q (200Hz)

vz (200Hz)

az (200Hz)

h (200Hz)

δec

δthe

Rx

Tx

P4

P3

P2

P1

P0 va_filter

100 Hz

va_control

50 Hz

va_filter

100 Hz

q_filter

100 Hz

q_filter

100 Hz

vz_filter

100 Hz

vz_filter

100 Hz

az_filter

100 Hz

az_filter

100 Hz

h_filter

100 Hz

altitude
50 Hz

vz_control

50 Hz

h_filter

100 Hz

transmit
50 Hz

receive
200 Hz

receive
200 Hz

receive
200 Hz

receive
200 Hz

Hyper-period

◦ Flight management system controller
◦ Receive from sensors and transmit to actuators

◦ Assumptions:
Tasks are mapped on 5 cores
Debug Support Unit is disabled
Context switches are over-approximated constants

1 Pagetti et al., RTAS 2014
15 / 21

Evaluation: ROSACE Case Study 1

va_filter
(100Hz)

q_filter
(100Hz)

vz_filter
(100Hz)

az_filter
(100Hz)

h_filter
(100Hz)

altitude
(50Hz)

vz_control
(50Hz)

va_control
(50Hz)va (200Hz)

q (200Hz)

vz (200Hz)

az (200Hz)

h (200Hz)

δec

δthe

Rx

Tx

P4

P3

P2

P1

P0 va_filter

100 Hz

va_control

50 Hz

va_filter

100 Hz

q_filter

100 Hz

q_filter

100 Hz

vz_filter

100 Hz

vz_filter

100 Hz

az_filter

100 Hz

az_filter

100 Hz

h_filter

100 Hz

altitude
50 Hz

vz_control

50 Hz

h_filter

100 Hz

transmit
50 Hz

receive
200 Hz

receive
200 Hz

receive
200 Hz

receive
200 Hz

Hyper-period

◦ Flight management system controller
◦ Receive from sensors and transmit to actuators
◦ Assumptions:

Tasks are mapped on 5 cores
Debug Support Unit is disabled
Context switches are over-approximated constants

1 Pagetti et al., RTAS 2014
15 / 21

Evaluation: ROSACE Case Study 1

va_filter
(100Hz)

q_filter
(100Hz)

vz_filter
(100Hz)

az_filter
(100Hz)

h_filter
(100Hz)

altitude
(50Hz)

vz_control
(50Hz)

va_control
(50Hz)va (200Hz)

q (200Hz)

vz (200Hz)

az (200Hz)

h (200Hz)

δec

δthe

Rx

Tx

P4

P3

P2

P1

P0 va_filter

100 Hz

va_control

50 Hz

va_filter

100 Hz

q_filter

100 Hz

q_filter

100 Hz

vz_filter

100 Hz

vz_filter

100 Hz

az_filter

100 Hz

az_filter

100 Hz

h_filter

100 Hz

altitude
50 Hz

vz_control

50 Hz

h_filter

100 Hz

transmit
50 Hz

receive
200 Hz

receive
200 Hz

receive
200 Hz

receive
200 Hz

Hyper-period

◦ Flight management system controller
◦ Receive from sensors and transmit to actuators
◦ Assumptions:

Tasks are mapped on 5 cores
Debug Support Unit is disabled
Context switches are over-approximated constants

1 Pagetti et al., RTAS 2014
15 / 21

Evaluation: ROSACE Case Study

Task Processor Demand (cycles) Memory Demand (accesses)
altitude 275 22
az_filter 274 22
h_filter 326 24

va_control 303 24
va_filter 301 23
vz_control 320 25
vz_filter 334 25

Table: Task profiles of the FMS controller

◦ Profile obtained from measurements

◦ Memory Demand: data and instruction cache misses + communications
◦ Moreover:

◦ NoC Rx : writes 5 words
◦ NoC Tx : reads 2 words

� Experiments: Find the smallest schedulable hyper-period

16 / 21

Evaluation: ROSACE Case Study

Task Processor Demand (cycles) Memory Demand (accesses)
altitude 275 22
az_filter 274 22
h_filter 326 24

va_control 303 24
va_filter 301 23
vz_control 320 25
vz_filter 334 25

Table: Task profiles of the FMS controller

◦ Profile obtained from measurements
◦ Memory Demand: data and instruction cache misses + communications

◦ Moreover:
◦ NoC Rx : writes 5 words
◦ NoC Tx : reads 2 words

� Experiments: Find the smallest schedulable hyper-period

16 / 21

Evaluation: ROSACE Case Study

Task Processor Demand (cycles) Memory Demand (accesses)
altitude 275 22
az_filter 274 22
h_filter 326 24

va_control 303 24
va_filter 301 23
vz_control 320 25
vz_filter 334 25

Table: Task profiles of the FMS controller

◦ Profile obtained from measurements
◦ Memory Demand: data and instruction cache misses + communications
◦ Moreover:

◦ NoC Rx : writes 5 words
◦ NoC Tx : reads 2 words

� Experiments: Find the smallest schedulable hyper-period

16 / 21

Evaluation: ROSACE Case Study

Task Processor Demand (cycles) Memory Demand (accesses)
altitude 275 22
az_filter 274 22
h_filter 326 24

va_control 303 24
va_filter 301 23
vz_control 320 25
vz_filter 334 25

Table: Task profiles of the FMS controller

◦ Profile obtained from measurements
◦ Memory Demand: data and instruction cache misses + communications
◦ Moreover:

◦ NoC Rx : writes 5 words
◦ NoC Tx : reads 2 words

� Experiments: Find the smallest schedulable hyper-period

16 / 21

Evaluation: Experiments

memory access pattern memory access pattern

1 bank 5 banks

0

4000

8000

12000

16000

MPPA RR MPPA RR
Bus Policy

P
ro

ce
ss

or
 c

yc
le

s

E5: Pessimistic
E4: 1−Phase (w/o release)
E3: 2−Phase (w/o release)
E2: 1−Phase
E1: 2−Phase

Smallest schedulable hyper-period

◦ Pessimistic assumption:
High priority tasks are
bounded by 1 access per bank

◦ Phases are modeled as
sub-tasks

2-Phase model1-Phase model

E5: All accesses interfere
E4, E3: We don’t use
the release dates

E2, E1: Our approach.
We use the release dates

17 / 21

Evaluation: Experiments

memory access pattern memory access pattern

1 bank 5 banks

0

4000

8000

12000

16000

MPPA RR MPPA RR
Bus Policy

P
ro

ce
ss

or
 c

yc
le

s

E5: Pessimistic
E4: 1−Phase (w/o release)
E3: 2−Phase (w/o release)
E2: 1−Phase
E1: 2−Phase

Smallest schedulable hyper-period

◦ Pessimistic assumption:
High priority tasks are
bounded by 1 access per bank

◦ Phases are modeled as
sub-tasks

2-Phase model1-Phase model

E5: All accesses interfere

E4, E3: We don’t use
the release dates

E2, E1: Our approach.
We use the release dates

17 / 21

Evaluation: Experiments

memory access pattern memory access pattern

1 bank 5 banks

0

4000

8000

12000

16000

MPPA RR MPPA RR
Bus Policy

P
ro

ce
ss

or
 c

yc
le

s

E5: Pessimistic
E4: 1−Phase (w/o release)
E3: 2−Phase (w/o release)
E2: 1−Phase
E1: 2−Phase

Smallest schedulable hyper-period

◦ Pessimistic assumption:
High priority tasks are
bounded by 1 access per bank

◦ Phases are modeled as
sub-tasks

2-Phase model1-Phase model

E5: All accesses interfere
E4, E3: We don’t use
the release dates

E2, E1: Our approach.
We use the release dates

17 / 21

Evaluation: Experiments

memory access pattern memory access pattern

1 bank 5 banks

0

4000

8000

12000

16000

MPPA RR MPPA RR
Bus Policy

P
ro

ce
ss

or
 c

yc
le

s

E5: Pessimistic
E4: 1−Phase (w/o release)
E3: 2−Phase (w/o release)
E2: 1−Phase
E1: 2−Phase

Smallest schedulable hyper-period

◦ Pessimistic assumption:
High priority tasks are
bounded by 1 access per bank

◦ Phases are modeled as
sub-tasks

2-Phase model1-Phase model

E5: All accesses interfere
E4, E3: We don’t use
the release dates

E2, E1: Our approach.
We use the release dates

17 / 21

Evaluation: Experiments

memory access pattern memory access pattern

1 bank 5 banks

0

4000

8000

12000

16000

MPPA RR MPPA RR
Bus Policy

P
ro

ce
ss

or
 c

yc
le

s

E5: Pessimistic
E4: 1−Phase (w/o release)
E3: 2−Phase (w/o release)
E2: 1−Phase
E1: 2−Phase

Smallest schedulable hyper-period

◦ Pessimistic assumption:
High priority tasks are
bounded by 1 access per bank

◦ Phases are modeled as
sub-tasks

2-Phase model1-Phase model

E5: All accesses interfere
E4, E3: We don’t use
the release dates

E2, E1: Our approach.
We use the release dates

17 / 21

Evaluation: Experiments
Taking into account the memory banks improves the analysis with a factor in [1.77,2.52]

1 bank 5 banks

0

4000

8000

12000

16000

MPPA RR MPPA RR
Bus Policy

P
ro

ce
ss

or
 c

yc
le

s

E5: Pessimistic
E4: 1−Phase (w/o release)
E3: 2−Phase (w/o release)
E2: 1−Phase
E1: 2−Phase

Smallest schedulable hyper-period

C
o
n
si

st

en
t *

Complete

* W
e
ll d

o
cu

m
ented * Easy to

 re
u
se

 *
 * E

valuate

d

*

 R
TN

S
 *

Artifact

E5/E1 E5/E2 E3/E1 E4/E2 E2/E1 E4/E3
MPPA 4.15 4.12 1.68 1.29 ∼1.01 0.77

RR 3.3 3.29 1.24 1.13 ∼1.01 0.91

Speedup factors

18 / 21

Evaluation: Experiments
Taking into account the memory banks improves the analysis with a factor in [1.77,2.52]

1 bank 5 banks

0

4000

8000

12000

16000

MPPA RR MPPA RR
Bus Policy

P
ro

ce
ss

or
 c

yc
le

s

E5: Pessimistic
E4: 1−Phase (w/o release)
E3: 2−Phase (w/o release)
E2: 1−Phase
E1: 2−Phase

Smallest schedulable hyper-period

C
o
n
si

st

en
t *

Complete

* W
e
ll d

o
cu

m
ented * Easy to

 re
u
se

 *
 * E

valuate

d

*

 R
TN

S
 *

Artifact

E5/E1 E5/E2 E3/E1 E4/E2 E2/E1 E4/E3
MPPA 4.15 4.12 1.68 1.29 ∼1.01 0.77

RR 3.3 3.29 1.24 1.13 ∼1.01 0.91

Speedup factors

18 / 21

Evaluation: Experiments
Taking into account the memory banks improves the analysis with a factor in [1.77,2.52]

1 bank 5 banks

0

4000

8000

12000

16000

MPPA RR MPPA RR
Bus Policy

P
ro

ce
ss

or
 c

yc
le

s

E5: Pessimistic
E4: 1−Phase (w/o release)
E3: 2−Phase (w/o release)
E2: 1−Phase
E1: 2−Phase

Smallest schedulable hyper-period

C
o
n
si

st

en
t *

Complete

* W
e
ll d

o
cu

m
ented * Easy to

 re
u
se

 *
 * E

valuate

d

*

 R
TN

S
 *

Artifact

E5/E1 E5/E2 E3/E1 E4/E2 E2/E1 E4/E3
MPPA 4.15 4.12 1.68 1.29 ∼1.01 0.77

RR 3.3 3.29 1.24 1.13 ∼1.01 0.91

Speedup factors

18 / 21

Evaluation: Experiments
Taking into account the memory banks improves the analysis with a factor in [1.77,2.52]

1 bank 5 banks

0

4000

8000

12000

16000

MPPA RR MPPA RR
Bus Policy

P
ro

ce
ss

or
 c

yc
le

s

E5: Pessimistic
E4: 1−Phase (w/o release)
E3: 2−Phase (w/o release)
E2: 1−Phase
E1: 2−Phase

Smallest schedulable hyper-period

C
o
n
si

st

en
t *

Complete

* W
e
ll d

o
cu

m
ented * Easy to

 re
u
se

 *
 * E

valuate

d

*

 R
TN

S
 *

Artifact

E5/E1 E5/E2 E3/E1 E4/E2 E2/E1 E4/E3
MPPA 4.15 4.12 1.68 1.29 ∼1.01 0.77

RR 3.3 3.29 1.24 1.13 ∼1.01 0.91

Speedup factors

18 / 21

Evaluation: Experiments
Taking into account the memory banks improves the analysis with a factor in [1.77,2.52]

1 bank 5 banks

0

4000

8000

12000

16000

MPPA RR MPPA RR
Bus Policy

P
ro

ce
ss

or
 c

yc
le

s

E5: Pessimistic
E4: 1−Phase (w/o release)
E3: 2−Phase (w/o release)
E2: 1−Phase
E1: 2−Phase

Smallest schedulable hyper-period

C
o
n
si

st

en
t *

Complete

* W
e
ll d

o
cu

m
ented * Easy to

 re
u
se

 *
 * E

valuate

d

*

 R
TN

S
 *

Artifact

E5/E1 E5/E2 E3/E1 E4/E2 E2/E1 E4/E3
MPPA 4.15 4.12 1.68 1.29 ∼1.01 0.77

RR 3.3 3.29 1.24 1.13 ∼1.01 0.91

Speedup factors

18 / 21

Evaluation: Experiments
Taking into account the memory banks improves the analysis with a factor in [1.77,2.52]

1 bank 5 banks

0

4000

8000

12000

16000

MPPA RR MPPA RR
Bus Policy

P
ro

ce
ss

or
 c

yc
le

s

E5: Pessimistic
E4: 1−Phase (w/o release)
E3: 2−Phase (w/o release)
E2: 1−Phase
E1: 2−Phase

Smallest schedulable hyper-period

C
o
n
si

st

en
t *

Complete

* W
e
ll d

o
cu

m
ented * Easy to

 re
u
se

 *
 * E

valuate

d

*

 R
TN

S
 *

Artifact

E5/E1 E5/E2 E3/E1 E4/E2 E2/E1 E4/E3
MPPA 4.15 4.12 1.68 1.29 ∼1.01 0.77

RR 3.3 3.29 1.24 1.13 ∼1.01 0.91

Speedup factors

18 / 21

Outline

1 Motivation and Context

2 Models Definition
Architecture Model
Execution Model
Application Model

3 Multicore Response Time Analysis of SDF Programs

4 Evaluation

5 Conclusion and Future Work

19 / 21

Conclusion

◦ A response time analysis of SDF on the Kalray MPPA 256

◦ Given:
◦ Task profile
◦ Mapping of Tasks
◦ Execution Order

◦ We compute:
◦ Tight response times taking into account the interference.
◦ Release dates respecting the dependency constraints.

◦ Not restricted to SDF

model of
the multi-level arbiter

double fixed-point
algorithm

20 / 21

Conclusion

◦ A response time analysis of SDF on the Kalray MPPA 256

◦ Given:
◦ Task profile
◦ Mapping of Tasks
◦ Execution Order

◦ We compute:
◦ Tight response times taking into account the interference.
◦ Release dates respecting the dependency constraints.

◦ Not restricted to SDF

model of
the multi-level arbiter

double fixed-point
algorithm

20 / 21

Conclusion

◦ A response time analysis of SDF on the Kalray MPPA 256

◦ Given:
◦ Task profile
◦ Mapping of Tasks
◦ Execution Order

◦ We compute:
◦ Tight response times taking into account the interference.
◦ Release dates respecting the dependency constraints.

◦ Not restricted to SDF

model of
the multi-level arbiter

double fixed-point
algorithm

20 / 21

Conclusion

◦ A response time analysis of SDF on the Kalray MPPA 256

◦ Given:
◦ Task profile
◦ Mapping of Tasks
◦ Execution Order

◦ We compute:
◦ Tight response times taking into account the interference.
◦ Release dates respecting the dependency constraints.

◦ Not restricted to SDF

model of
the multi-level arbiter

double fixed-point
algorithm

20 / 21

Conclusion

◦ A response time analysis of SDF on the Kalray MPPA 256

◦ Given:
◦ Task profile
◦ Mapping of Tasks
◦ Execution Order

◦ We compute:
◦ Tight response times taking into account the interference.
◦ Release dates respecting the dependency constraints.

◦ Not restricted to SDF

model of
the multi-level arbiter

double fixed-point
algorithm

20 / 21

Conclusion

◦ A response time analysis of SDF on the Kalray MPPA 256

◦ Given:
◦ Task profile
◦ Mapping of Tasks
◦ Execution Order

◦ We compute:
◦ Tight response times taking into account the interference.
◦ Release dates respecting the dependency constraints.

◦ Not restricted to SDF

model of
the multi-level arbiter

double fixed-point
algorithm

20 / 21

Future Work

◦ Model of the Resource Manager.

◦ Model of the NoC accesses.

◦ Memory access pipelining.

◦ Model Blocking and non-blocking accesses.

tighter estimation of
context switches and
other interrupts

use the output of
any NoC analysis

current assumption:
bus delay is 10 cycles

reads are blocking
writes are non-blocking

P0 P1

P2 P3

P4 P5

P6 P7

RM

NoC Rx

P8 P9

P10 P11

P12 P13

P14 P15

DSU

NoC Tx

8
sh

ar
ed

m
em

or
y

ba
nk

s 8
shared

m
em

ory
banks

Questions?

21 / 21

Future Work

◦ Model of the Resource Manager.

◦ Model of the NoC accesses.

◦ Memory access pipelining.

◦ Model Blocking and non-blocking accesses.

tighter estimation of
context switches and
other interrupts

use the output of
any NoC analysis

current assumption:
bus delay is 10 cycles

reads are blocking
writes are non-blocking

P0 P1

P2 P3

P4 P5

P6 P7

RM

NoC Rx

P8 P9

P10 P11

P12 P13

P14 P15

DSU

NoC Tx

8
sh

ar
ed

m
em

or
y

ba
nk

s 8
shared

m
em

ory
banks

Questions?

21 / 21

Future Work

◦ Model of the Resource Manager.

◦ Model of the NoC accesses.

◦ Memory access pipelining.

◦ Model Blocking and non-blocking accesses.

tighter estimation of
context switches and
other interrupts

use the output of
any NoC analysis

current assumption:
bus delay is 10 cycles

reads are blocking
writes are non-blocking

P0 P1

P2 P3

P4 P5

P6 P7

RM

NoC Rx

P8 P9

P10 P11

P12 P13

P14 P15

DSU

NoC Tx

8
sh

ar
ed

m
em

or
y

ba
nk

s 8
shared

m
em

ory
banks

Questions?

21 / 21

Future Work

◦ Model of the Resource Manager.

◦ Model of the NoC accesses.

◦ Memory access pipelining.

◦ Model Blocking and non-blocking accesses.

tighter estimation of
context switches and
other interrupts

use the output of
any NoC analysis

current assumption:
bus delay is 10 cycles

reads are blocking
writes are non-blocking

P0 P1

P2 P3

P4 P5

P6 P7

RM

NoC Rx

P8 P9

P10 P11

P12 P13

P14 P15

DSU

NoC Tx

8
sh

ar
ed

m
em

or
y

ba
nk

s 8
shared

m
em

ory
banks

Questions?

21 / 21

Future Work

◦ Model of the Resource Manager.

◦ Model of the NoC accesses.

◦ Memory access pipelining.

◦ Model Blocking and non-blocking accesses.

tighter estimation of
context switches and
other interrupts

use the output of
any NoC analysis

current assumption:
bus delay is 10 cycles

reads are blocking
writes are non-blocking

P0 P1

P2 P3

P4 P5

P6 P7

RM

NoC Rx

P8 P9

P10 P11

P12 P13

P14 P15

DSU

NoC Tx

8
sh

ar
ed

m
em

or
y

ba
nk

s 8
shared

m
em

ory
banks

Questions?

21 / 21

Future Work

◦ Model of the Resource Manager.

◦ Model of the NoC accesses.

◦ Memory access pipelining.

◦ Model Blocking and non-blocking accesses.

tighter estimation of
context switches and
other interrupts

use the output of
any NoC analysis

current assumption:
bus delay is 10 cycles

reads are blocking
writes are non-blocking

P0 P1

P2 P3

P4 P5

P6 P7

RM

NoC Rx

P8 P9

P10 P11

P12 P13

P14 P15

DSU

NoC Tx

8
sh

ar
ed

m
em

or
y

ba
nk

s 8
shared

m
em

ory
banks

Questions?

21 / 21

Future Work

◦ Model of the Resource Manager.

◦ Model of the NoC accesses.

◦ Memory access pipelining.

◦ Model Blocking and non-blocking accesses.

tighter estimation of
context switches and
other interrupts

use the output of
any NoC analysis

current assumption:
bus delay is 10 cycles

reads are blocking
writes are non-blocking

P0 P1

P2 P3

P4 P5

P6 P7

RM

NoC Rx

P8 P9

P10 P11

P12 P13

P14 P15

DSU

NoC Tx

8
sh

ar
ed

m
em

or
y

ba
nk

s 8
shared

m
em

ory
banks

Questions?

21 / 21

Future Work

◦ Model of the Resource Manager.

◦ Model of the NoC accesses.

◦ Memory access pipelining.

◦ Model Blocking and non-blocking accesses.

tighter estimation of
context switches and
other interrupts

use the output of
any NoC analysis

current assumption:
bus delay is 10 cycles

reads are blocking
writes are non-blocking

P0 P1

P2 P3

P4 P5

P6 P7

RM

NoC Rx

P8 P9

P10 P11

P12 P13

P14 P15

DSU

NoC Tx

8
sh

ar
ed

m
em

or
y

ba
nk

s 8
shared

m
em

ory
banks

Questions?

21 / 21

Future Work

◦ Model of the Resource Manager.

◦ Model of the NoC accesses.

◦ Memory access pipelining.

◦ Model Blocking and non-blocking accesses.

tighter estimation of
context switches and
other interrupts

use the output of
any NoC analysis

current assumption:
bus delay is 10 cycles

reads are blocking
writes are non-blocking

P0 P1

P2 P3

P4 P5

P6 P7

RM

NoC Rx

P8 P9

P10 P11

P12 P13

P14 P15

DSU

NoC Tx

8
sh

ar
ed

m
em

or
y

ba
nk

s 8
shared

m
em

ory
banks

Questions?

21 / 21

BACKUP

Multicore Response Time Analysis

Example: Fixed Priority bus arbiter, PE1 > PE0
Bus access delay = 10

t

PE0

PE1

00 40 80 120 160

2 accesses 2 accesses

T1

2 accesses

T1

2 accesses

T1 T1

3 accesses

T0

3 accesses

Response time

1Altmeyer et al., RTNS 2015

Multicore Response Time Analysis

Example: Fixed Priority bus arbiter, PE1 > PE0
Bus access delay = 10

t

PE0

PE1

00 40 80 120 160

2 accesses 2 accesses

T1

2 accesses

T1

2 accesses

T1 T1

3 accesses

T0

3 accesses

Response time

◦ Task of interest running on PE0:
R0 = 10 + 3×10 (response time in isolation)

R1 = 10 + 3×10 + 2×10 = 60

R2 = 10 + 3×10 + 2×10 + 2×10 = 80

R3 = 10 + 3×10 + 2×10 + 2×10 + 0 = 80 (fixed-point)

1Altmeyer et al., RTNS 2015

Multicore Response Time Analysis

Example: Fixed Priority bus arbiter, PE1 > PE0
Bus access delay = 10

t

PE0

PE1

00 40 80 120 160

2 accesses 2 accesses

T1

2 accesses

T1

2 accesses

T1 T1

3 accesses

T0

3 accesses

Response time

◦ Task of interest running on PE0:
R0 = 10 + 3×10 (response time in isolation)
R1 = 10 + 3×10 + 2×10 = 60

R2 = 10 + 3×10 + 2×10 + 2×10 = 80

R3 = 10 + 3×10 + 2×10 + 2×10 + 0 = 80 (fixed-point)

1Altmeyer et al., RTNS 2015

Multicore Response Time Analysis

Example: Fixed Priority bus arbiter, PE1 > PE0
Bus access delay = 10

t

PE0

PE1

00 40 80 120 160

2 accesses 2 accesses

T1

2 accesses

T1

2 accesses

T1 T1

3 accesses

T0

3 accesses

Response time

◦ Task of interest running on PE0:
R0 = 10 + 3×10 (response time in isolation)
R1 = 10 + 3×10 + 2×10 = 60

R2 = 10 + 3×10 + 2×10 + 2×10 = 80

R3 = 10 + 3×10 + 2×10 + 2×10 + 0 = 80 (fixed-point)

1Altmeyer et al., RTNS 2015

Multicore Response Time Analysis

Example: Fixed Priority bus arbiter, PE1 > PE0
Bus access delay = 10

t

PE0

PE1

00 40 80 120 160

2 accesses 2 accesses

T1

2 accesses

T1

2 accesses

T1 T1

3 accesses

T0

3 accesses

Response time

◦ Task of interest running on PE0:
R0 = 10 + 3×10 (response time in isolation)
R1 = 10 + 3×10 + 2×10 = 60

R2 = 10 + 3×10 + 2×10 + 2×10 = 80

R3 = 10 + 3×10 + 2×10 + 2×10 + 0 = 80 (fixed-point)

1Altmeyer et al., RTNS 2015

The Global Picture

Static
Mapping/Scheduling

WCRT with
Interferences

Local WCRT
Analysis

Timing models
(static analysis)

Probabilistic
Models

High-level
Program

+

Executable Binary

Binary Generation

Code Generation

Dependencies

Tasks

Mapping

Execution
Order

Release
Dates

+
Tasks WCRT

WC Access

	Motivation and Context
	Models Definition
	Architecture Model
	Execution Model
	Application Model

	Multicore Response Time Analysis of SDF Programs
	Evaluation
	Conclusion and Future Work
	Appendix

