
QoS-Enabled Business-to-Business Integration
Using ebBP to WS-BPEL Translations

Andreas Schönberger, Thomas Benker, Stefan Fritzemeier, Matthias Geiger, Simon Harrer, Tristan Kessner,
Johannes Schwalb and Guido Wirtz

Distributed and Mobile Systems Group
Otto-Friedrich-University of Bamberg

Bamberg, Germany
{andreas.schoenberger | guido.wirtz}@uni-bamberg.de

Abstract

Business-To-Business Integration (B2Bi) is a key mechanism
for enterprises to gain competitive advantage. However,
developing B2Bi applications is far from trivial. Inter alia,
agreement among integration partners about the business
documents and the control flow of business document
exchanges, applying suitable communication technologies
for overcoming heterogeneous IT landscapes as well as
ensuring a Quality of Service (QoS) level that is sufficient
for B2Bi are major challenges.
In this context, applying choreography languages like
ebXML BPSS (ebBP) for agreement among integration
partners, orchestration languages like WS-BPEL for
specifying partner-specific behavior, and Web Services
for communication promises seamless interactions among
business partners. In this scenario, the conformance
of orchestration models to choreography models and
cost-effective development are of paramount importance.
Consequently, top-down approaches that automatically
translate choreography models into orchestration models
have been proposed.
By now, the realization of QoS attributes has not yet received
the necessary attention that makes such approaches suitable
for B2Bi. In this paper, we describe a proof-of-concept
implementation of a translation of ebBP choreographies
into WS-BPEL orchestrations that respects B2Bi relevant
QoS attributes.

Keywords: B2Bi, ebXML BPSS, WS-BPEL, Quality of
Service, NES, conformance

1. Introduction

Supply Chain Management (SCM) is a key success fac-
tor for enterprises in today’s business world [1]. Hence,
Business-To-Business Integration (B2Bi) as a core SCM task
deserves extensive treatment by industry and academia. The
tasks to be solved in the B2Bi domain are challenging.
Among others, the integration partners have to agree on the

control flow of the integrated processes and on business doc-
ument formats, ensure that the local processes implemented
by each partner’s IT systems conform to this agreement,
and apply communication technologies that are suitable to
interconnect their frequently heterogeneous IT facilities [2],
[3], [4]. At the same time, B2Bi related Quality-of-Service
(QoS) requirements like security and reliability have to
be addressed. Today, Web services and the orchestration
language WS-BPEL [5] (BPEL in the following) promise
to provide the necessary tool set for exchanging business
documents interoperably and for realizing the control flow
between single Web service calls. Maturing Web service
extensions like WS-Security [6] or WS-ReliableMessaging
[7], frequently denoted as WS-* standards, can further be
applied to realize QoS requirements. Yet, applying these
technologies does not provide sufficient support for a global
agreement upon control flow among integration partners.
ebBP [8] as a choreography language is offering func-
tionality for capturing the overall message flow between
integration partners from a global point of view as well as for
specifying B2Bi relevant QoS requirements. Hence, ebBP
models may be used to assure such agreements. However,
using ebBP choreographies as means for agreement and
BPEL/Web Service based orchestrations for implementation
rises the problem of conformance of orchestration models
to choreography models. One obvious solution to this prob-
lem is creating a carefully designed translation engine that
produces BPEL orchestrations from ebBP choreographies.
Consequently, translating choreographies into orchestrations
in general [9], [10], [11], [12], and ebBP to BPEL in
particular [13], already has been proposed in literature. [9]
even considers several QoS attributes but to the best of our
knowledge a thorough treatment of QoS attributes as defined
in ebBP during ebBP-to-BPEL translations has not yet been
done.
This paper investigates this missing issue by modeling
integration processes in ebBP and translating these models
into QoS-enabled BPEL orchestrations. In order to ensure
practical validity, real-world business processes from the
Northern European Subset www.nesubl.eu (NES) have



been chosen as use cases. NES is a standardization body
constituted of six northern European countries that define
standard business document formats and standard business
processes (profiles) in the area of electronic collaboration
and procurement in both domestic and cross border trade.
The paper proceeds as follows: Section 2 gives a short
overview of this work’s most important technologies and
section 3 introduces our approach to support QoS in B2Bi.
Section 4 subsequently introduces the use case. The ac-
cording ebBP models are then described in section 5 and
their translation is outlined in section 6. Section 7 points
out practical experience before related work is discussed
in 8. Finally, section 9 concludes the paper and points out
directions for future work.

2. Basics

ebBP, BPEL and QoS are core to our approach. The
ebBP choreography language is based on the concept of
BusinessTransactions (BT) that are used for exchanging
one or two business documents between the so-called Re-
questingRole and RespondingRole. For the exchange of
each business document, so-called BusinessActivities (BA)
are used to specify whether ReceiptAcknowledgements and
AcceptanceAcknowledgements as well as according excep-
tions are needed. So-called BusinessCollaborations (Coll)
with at least two roles (integration partners) can be com-
bined to build complex integration models. Usual control
flow constructs like Decision, Join or Fork can be used
to choreograph BusinessTransactionActivities (BTA) and
BusinessCollaborationActivities (CA) that specify the actual
execution of BusinessTransactions and BusinessCollabora-
tions, respectively, by adding execution parameters such as
TimeToPerform and mapping the roles of the performing
BusinessCollaboration to the roles of the performed entity.
BPEL is a Web service orchestration language that is used
for defining executable (or abstract) processes composed by
a series of incoming or outgoing Web service calls. So-called
partnerLinkTypes are defined within corresponding WSDL
files that define roles in Web service communications based
on WSDL portTypes. The BPEL process under considera-
tion then uses partnerLink definitions for incorporating the
roles of partnerLinkTypes and thus defines the functionality
consumed or offered by the process. Based on these part-
nerLinks synchronous and asynchronous interactions like
invoke, receive or onMessage can be defined and constructs
like sequence, if and while can be used to define the control
flow between these interactions. For details please refer to
[5].
QoS are frequently defined as quantifiable, non-functional
aspects of a service, but as security qualities like encryption
or confidentiality are hard to quantify this work adopts
the more general definition of [14]: “[...]the term QoS
[...is] used to denote all non-functional aspects of a service

which may be used by clients to judge service quality. This
extends other more restrictive QoS definitions such as the
common interpretation of QoS to mean network performance
attributes.”

3. Approach

We propose a top-down development approach that adopts
the idea of automatically translating ebBP choreographies
into BPEL orchestrations. In this scenario, ebBP is used
for specifying the content of business documents and their
order of exchange as well as according QoS properties. The

Figure 1. B2Bi integration architecture

BPEL processes to be generated are then responsible for im-
plementing the protocol part of each integration participant
using Web services as means for ensuring interoperability.
We claim that an according ebBP-to-BPEL translator can
ensure the conformance of these BPEL orchestrations to
ebBP choreographies because the development of such a
translator is a one-time effort. Clearly, a major issue in



writing an ebBP-to-BPEL translator is deriving a feature-
complete mapping of ebBP constructs to BPEL constructs,
but in this work we concentrate on the realization of B2Bi
related QoS properties using Web service technology. We
map a reduced set of ebBP constructs that we needed for
modeling the NES use cases (cf. sec. 4) to BPEL. Despite
these restrictions, our translation is still relevant to practice
as the NES processes represent real-world B2Bi use cases.
Before discussing the realization of B2Bi QoS properties,
the integration architecture our approach is based on is
described. Figure 1 visualizes our architecture that assumes
that real-world integration scenarios (upper third of the
figure) are first captured in an choreography model defining
QoS requirements (box denoted with CHOR) that is trans-
lated into according BPEL orchestration processes (denoted
ORCH) afterwards, where each integration participant em-
ploys a BPEL process (control process in the following) on
its own. These control processes get triggered by backend
systems when a new B2Bi process instance is needed
and then control the message flow of the collaboration by
forwarding incoming messages to the backend systems and
backend messages to the partners’ control processes. Note,
that business logic such as the creation and evaluation of
business documents, e.g., rating an order to be acceptable
by creating a confirmation, or capturing real-world events,
e.g., a new order has to be placed, is encapsulated by
backend systems using well-defined WSDL interfaces. Thus,
the application of control processes helps in separating the
message flow of a collaboration from the actual business
logic. This idea is not new and has been proposed, among
others, in the RosettaNet Implementation Framework [15]
where so-called public and private processes are used to
decouple the message exchange with integration partners
from backend systems. This concept helps in wrapping
existing legacy systems but also comes in handy in case
no preexisting systems exist for parts of the needed business
logic. Concerning our translator, the encapsulation of private
logic assuming some well-defined interfaces also enables
the derivation of BPEL control processes that do not have
to be modified after generation. Within this scenario, Web
services are proposed for both, the communication between
partners and the communication between control processes
and backend systems. We argue that interoperability and
decoupling of systems is equally important for both types
of communication.
The notion of QoS as defined in sec. 2 needs an opera-
tionalization for B2Bi. In order to identify the set of QoS
requirements at least necessary for B2Bi, this work adopts
the proposal of the B2Bi experts who authored the ebBP
specification: “The ebBP technical specification provides pa-
rameters that can be used to specify certain levels of security
and reliability. This specification provides these parameters
in general business terms” ([8], sec. 3.5.7). Therefore,
support for the QoS attributes identified in ebBP should

be sufficient for B2Bi. These can be classified in attributes
that relate to business documents and attachments (DocAtt),
BusinessActivitys (BA), BusinessTransactions (BT), Busi-
nessTransactionActivitys (BTA) and BusinessCollaborations
(Coll, cf. sec. 2). Table 1 lists the QoS attributes identified in
ebBP and the according level of specification. Most of these
QoS attributes are self-explanatory and don’t accept any
parameters. Exceptions are the DocAtt attributes which are
all related to security and the timeToPerform attribute. For
the DocAtt attributes, ebBP distinguishes between realization
options, i.e., the respective attribute has to be realized using
security mechanisms at the transport level (transient), at
the application level (persistent) or both (transient-and-
persistent). Finally, timeToPerform offers parameters for
specifying whether timers shall be set statically (design),
be agreed upon by partners before executing collaborations
(configuration) or during collaborations (runtime).

QoS Attribute Level of Specification
isAuthenticated DocAtt
isConfidential DocAtt
isTamperDetectable DocAtt
isIntelligibleCheckRequired BA
isNonRepudiationRequired BA
isNonRepudiationReceiptRequired BA
timeToAcknowledgeReceipt BA
timeToAcknowledgeAcceptance BA
isAuthorizationRequired BA
retryCount BA
isGuaranteedDeliveryRequired BT
hasLegalIntent BTA
isConcurrent BTA
timeToPerform Coll/BTA

Table 1. ebBP QoS attributes and specification levels
Huemer and Kim [13] identified three groups of realization
options for the QoS attributes described above: “The first
group uses a mapping to a corresponding BPEL attribute.
The second group is reflected in the process structure.
Finally, the third group does not have a corresponding BPEL
concept. They must be handled by other standards of the Web
Services stack.” This work adopts this analysis and adds the
fourth option of home-grown QoS Web services which are
then called by the BPEL orchestration processes for fulfilling
a particular QoS task, e.g., performing an authorization
check. Compared to the realization options in [13], these
QoS services constitute a mixture of reflecting the services in
the process structure and other standards of the Web Services
stack. Further, according to the ebBP specification some
attributes like encryption may be specified to be addressed
on the transport level. Therefore, the integration architecture
depicted in figure 1 also includes a visualization of QoS Web
services which are called by the orchestration processes as
well as padlocks representing the use of WS-* standards or



transport level security (TLS/SSL). A detailed discussion on
QoS realization follows in section 6.

4. Use Case

Real world processes, namely NES profiles, are employed
for investigating ebBP QoS attributes during ebBP to BPEL
translations. The focus of NES is the definition of a subset of
the Universal Business Language (UBL) [16] as a common
business document format. The exchange of these documents
(messages) is defined in eight so-called profiles that specify
the exchange of one (profiles 3 and 4) up to 5 (profile
7) business documents. This is done by describing, among
others, business benefits and requirements of the profile,
usage scenarios, and a process specification using an UML
activity diagram. For the purpose of demonstration, NES
profile 1 is discussed in this and the subsequent sections.
The remaining NES profiles are available from [17]. Figure
2 depicts the activity diagram of profile 1 which covers the
exchange of a catalogue and its approval. The supplier role

Figure 2. Activity diagram of NES profile 1[17]
of profile 1 sends a catalogue document to the customer role
which then accepts or rejects the catalogue and subsequently
sends back a positive or negative application response to the
supplier.
During our investigation, all NES profiles have been mod-
eled in ebBP and automatically translated into BPEL. The
resulting BPEL processes in turn all have been XML

schema validated and successfully deployed on the Glass-
Fish1/openESB2 BPEL engine. Moreover, for profiles 1-4 a
dummy backend for triggering processes and creating/judg-
ing upon business documents has been implemented. Using
these backends the actual flow of business documents and
the realization of QoS properties have been tested.

5. ebBP Model

As NES does not provide a concise meta model for
the profile business processes (it does so for the business
documents), modeling the NES profiles using the ebBP
constructs defined in section 2 is not based on an algorithm.
Instead, the processes have been remodeled using the profile
documentations and UML diagrams. As opposed to NES,
ebBP models only capture the globally visible message flow
of the choreography. For example, the NES model in figure
2 describes the decision process of the Customer role for the
handling of the catalogue business document. It is irrelevant
for the choreography whether the Customer applies the
Catalogue and sends an Application Response in parallel or
in sequence. Therefore, the ebBP model only captures the

Figure 3. Visualization of the ebBP model of profile 1

information that is unconditionally needed for representing
the global control and message flow. This is visualized in
figure 3 that depicts an informal UML activity diagram of the
ebBP model of profile 1. The ebBP model starts out with a
BusinessTransactionActivity (BTA) for sending the catalogue
from the Supplier to the Customer (these roles are specified
in the textual ebBP representation) and then arranges for
a check for technical success of the message transmission.
Therefor, an ebBP Decision element is used that employs the

1. https://glassfish.dev.java.net/
2. https://open-esb.dev.java.net/

https://glassfish.dev.java.net/
https://open-esb.dev.java.net/


predefined ebBP condition guard values ProtocolSuccess and
AnyProtocolFailure accordingly. Subsequently, another BTA
is used to transmit the application response of the Customer
and the Customer’s decision is captured by the code attribute
of the business message. Again, an ebBP Decision is used
to model the different results of the message transmission.
As can be seen, all information needed for describing the
global message exchange is included in the ebBP model
while aspects of the partners’ local decisions, as contained
in the NES models, are not described. Thus the ebBP
model is better suited as basis for agreement among the
integration partners whereas the NES model is better suited
for describing the context of the business collaboration.
The assignment of ebBP QoS attributes is derived from
the NES models by investigating the intent of each profile.
For the purpose of investigating QoS in the ebBP to BPEL
translation process, all available QoS attributes are activated
for some profiles in order to ensure that all these can indeed
be realized if needed. Listing 1 shows a BusinessActivity
that is used for transmitting an order document. More QoS
attributes are specified at the further ebBP elements as
described in table 1.

Listing 1. QoS assignment of a BusinessActivity
1 <!-- Enclosed within a BusinessTransaction

definition -->
2

3 <RequestingBusinessActivity
4 name="sendOrder"
5 nameID="bt_issueOrder_ba_req"
6 isAuthorizationRequired="true"
7 isIntelligibleCheckRequired="true"
8 isNonRepudiationRequired="true"
9 isNonRepudiationReceiptRequired="true"

10 retryCount="3"
11 timeToAcknowledgeReceipt="PT1H"
12 timeToAcknowledgeAcceptance="P1D">
13 <!-- more subtags defining
14 documentEnvelopes and acknowledgements

-->
15 </RequestingBusinessActivity>

6. Translation Concept

The discussion of translating ebBP specifications into
BPEL comprises the mapping of control flow constructs and
the realization of QoS. For the work at hand, the minimum
requirement for translating ebBP concepts into BPEL is
being able to translate real-world processes. As a first step
those ebBP constructs used for modeling the standardized
NES profiles are translated whereas few other ebBP ele-
ments, in particular Joins and Forks which precludes parallel
standard models, are not considered for translation.

Tables 2 and 3 show the mapping of the control flow
part of our ebBP-to-BPEL translator. Basically, binary ebBP
collaborations are translated into one parent BPEL control

Mapping of BusinessCollaboration
Role Mapping Elements

Initiator - process element as collaboration root process
- use Role for association of Initiator/Responder roles

in according BTAs/CAs
- receive for receiving initiating signal from backend
- invoke on helper Wsrv for creating unique process id
- invoke on partner process to distribute process id
- invoke on backend to distribute process id
- invoke to signal backend that first bizDoc can be sent
- receive to wait for first bizDoc
- onAlarm to capture TimeToPerform value;

in case TimeToPerform is of type runtime
use several negotiation calls

- faultHandlers in case of business protocol failures
and according invokes for informing partner
processes and child processes (if any)

- onEvent for receiving protocol failure signals
from partner process

- sequence for the first BTA and its Decision
with content as defined in the according mappings

Mapping of BusinessTransactionActivity
Role Mapping Elements

Agnostic - used to correlate BusinessCollaboration Roles
with RequestingRole / RespondingRole
of BusinessTransaction according to Performs tags

- invoke and receive to request next bizDoc from
backend if not done within BusinessCollaboration scope

- onAlarm to capture TimeToPerform value;
in case TimeToPerform is of type runtime
use several negotiation calls
Mapping of BusinessTransaction

Role Mapping Elements
Request- - while for retryCount of RequestingBusinessActivity
ingRole - faultHandlers to handle ReceiptAcknowledgement

-Exception and continue with next while iteration
- invoke on helper Wsrv to create signature for bizDoc

received in surrounding BTA / Coll code
- invoke to send bizDoc to partner process
- flow for handling ReceiptAcknowledgement/

AcceptanceAcknowledgement
in a separate scope each.
Therefor, receive to receive ebBP business signal and
onEvent to receive ebBP business signal exceptions.
Further, calls to signature check and archival helper Wsrv
where necessary.
Finally, onAlarm for capturing business signal timeouts
and throws for signaling processing errors.

- RespondingBusinessActivity mapped symmetrically

Table 2. ebBP to BPEL mapping I

process per participant. The generated BPEL processes have
a tree-like structure composed of the mapping code for
BTAs and Decisions where the generated code for follow-on
BTAs is placed within BPEL if/else elements that are
used for mapping Decisions. Iterative execution of BTAs is
therefore to be modeled by means of recursive invocations
using CollaborationActivitys. The eBP Start element is used
to determine which BTA to map first and has no direct BPEL
code mapping. The ebBP Failure and Success elements are
translated as BPEL invokes from the control processes
towards the backends for signaling process termination.
These calls represent the leaves of our generated process
structure. The Web service calls used to transmit business
documents are content agnostic, i.e., business documents are



Mapping of Decision
Role Mapping Elements

Agnostic - ConditionGuardValue AnyProtocolFailure mapped by
onAlarms/faultHandlers of enclosing scopes

- Evaluation based on latest bizDoc exchanged.
- FromLink used for determining where to insert the

Decision mapping code.
- Nested if / else structure where each ToLink

is enclosed within else block of preceding ToLink code.
- XPath evaluation invoke of helper Wsrv if necessary.
- Include code for follow-on BTAs in branches of
if / else structure
Mapping of CollaborationActivity

Role Mapping Elements
Agnostic - used to correlate parent collaboration Roles with

inner collaboration Roles
- new process for inner collaborations with receive to

be created from parent process.
- adapted onEvents / faultHandlers

for parent-child interaction

Table 3. ebBP to BPEL mapping II

wrapped within a message container using the XML Schema
any type. This message container carries several meta data
like correlation information and a string that specifies the
messageType under transmission which represents the ebBP
BusinessDocument type definition. Accordingly, the ebBP
BusinessDocument type is not reflected in the WSDL in-
terfaces that are created for specifying control process or
backend functionality.
The mapping of some ebBP elements, in particular Business-
Collaboration and BusinessTransaction, is role dependent,
i.e., the selection and sequence of BPEL elements used
to map the ebBP constructs varies depending on whether
the process under consideration represents the integration
partner who sends the first business document of the Busi-
nessCollaboration or the first business document of a Busi-
nessTransaction. Tables 2 and 3 only contain the mapping
for one role of these constructs because the mapping code
of the corresponding role is more or less symmetric. More-
over, variable handling as well as the details of nesting
scopes and sequences are not described. Nonetheless,
note that the control processes request the business doc-
uments to be exchanged from the backends outside the
BPEL scope that is used to implement the exchange with
the partner process in order to avoid delays in backend
interaction being counted for within the BPEL onAlarms
for the actual partner interaction. Finally note that business
document and Web service are abbreviated as bizDoc and
Wsrv respectively and that ebBP constructs are typeset like
ebBP and BPEL elements like BPEL.

There are several possibilities for realizing QoS proper-
ties (cf. sec. 3). The realization option BPEL elements is
chosen for several properties related to timeouts and for
the ebBP retry construct. BPEL onAlarms are used for
realizing timeouts where triggering onAlarms may require
special treatment with respect to backend interaction (see
above). Opposed to that, the treatment of retry with a BPEL

while is straightforward. The second realization option
QoS Web services (WSrv) is chosen for creating/validating
XML signatures using the standard Java API, for performing
XML and Schematron validations of business documents, for
archival of messages, and for authorization checks against
a simple user list. In particular, XML signatures are used
for multiple purposes, namely for authentication (isAuthen-
ticated attribute) and integrity (isTamperDetectable) reasons
as well as for realizing non-repudiation. Note that, for the
implementation of non-repudiation, signatures are not only
checked upon arrival of a message but are also archived
together with the corresponding message. All QoS Web
Services are called by the control processes where necessary.
Next, the WS-* standards WS-Security (isConfidential) and
WS-ReliableMessaging (isGuaranteedDeliveryRequired) as
well as TLS (document related attributes, cf. sec. 3) are used
for realizing QoS properties. If document related attributes
of type transient (see sec. 3) are specified, TLS as a network
layer technology is used. Otherwise, if the type is persistent,
WS-Security or QoS Web services are employed. WS-Policy
[18] can be used to instruct the BPEL execution engine/Web
service stack to apply WS-* standards as well as TLS to the
communication. Therefor, WS-Policy assertions are to be in-
cluded in the WSDL descriptions of the BPEL processes and
Web services. As an example, a policy assertion activating
the use of WS-ReliableMessaging is given in listing 2.

Listing 2. WS-Policy fragment for activating WS-
ReliableMessaging

1 ...
2 <wsp:Policy wsu:Id="

BPEL2BPELNoQosRMServicePortBindingPolicy
">

3 <wsp:ExactlyOne>
4 <wsp:All>
5 <wsaws:UsingAddressing
6 xmlns:wsaws="http://www.w3.org/2006/05/

addressing/wsdl" />
7 <wsrm:RMAssertion />
8 </wsp:All>
9 </wsp:ExactlyOne>

10 </wsp:Policy>
11 ...

Note that, depending on ebBP QoS attribute values, WS-
Policy assertions for any combination of WS-Security, WS-
ReliableMessaging and TLS are supported for communi-
cation. Finally, the ebBP QoS attributes isConcurrent and
hasLegalIntent are not realized in terms of the realization
options pointed out in section 3. According to ebBP, isCon-
current (cf. [8], section 3.4.10.1) specifies whether multiple
instances of a BusinessTransaction within the same process
or in different processes (with the same party) are allowed to
be active at the same time. Regarding the generated BPEL
processes, concurrent executions are no problem and we
argue that a backend system that offers its functionality via
a Web Service should be able to handle concurrent access.
Therefore, isConcurrent is always set to true in this work.



The semantics of hasLegalIntent is not completely clear.
ebBP states that “The hasLegalIntent attribute could have
widely differing interpretations and enforceability depending
on type of business, process, and jurisdiction.” ([8], section
3.4.9.7). We propose that a user shall configure a mapping
of hasLegalIntent to the assignment of other ebBP QoS
attributes during the translation process. Table 4 summarizes
the realization of ebBP QoS attributes.

QoS Attribute Realization strategy
isAuthenticated transient: TLS

persistent: WSrv SignatureValidation

isConfidential transient: TLS
persistent: WS-Security

isTamperDetectable transient: TLS
persistent: WSrv SignatureValidation

isIntelligibleCheckRequired WSrv XMLValidation
WSrv SchematronValidation

isNonRepudiationRequired WSrv Archive
WSrv SignatureCreation

isNonRepudiationReceipt- WSrv Archive
Required WSrv SignatureCreation

timeToAcknowledgeReceipt BPEL onAlarm

timeToAcknowledgeAcceptance BPEL onAlarm

isAuthorizationRequired WSrv AuthorizationCheck

retryCount BPEL while

isGuaranteedDeliveryRequired WS-ReliableMessaging

hasLegalIntent defined in terms of other
QoS attributes

isConcurrent not relevant

timeToPerform BPEL onAlarm

Table 4. ebBP QoS attributes and
and realization strategies

7. Practical Experience

The ebBP to BPEL translator is written in the Java
language and the main API used for that is the Java
API for XML Binding (JAXB3). The translator comprises
approximately 6800 method lines of code excluding JAXB
mapping classes, implementation of QoS Web Services
and backend implementation. For the generation of WSDL
interfaces, the Apache Velocity template engine is used.
GlassFish V2 and its Web service stack Metro together
with the openESB BPEL engine as well as Apache Tomcat
6 together with Axis2 and ODE 1.2 have been evaluated
as execution platform. The GlassFish combination has been
chosen due to better QoS support. Though it was possible to
offer BPEL processes as secure and reliable Web Services
with Axis2, invoking other services from BPEL processes
reliably and securely was not possible.
All NES profiles can be completely translated, fully BPEL

3. https://jaxb.dev.java.net/

compliant process descriptions are produced and these
processes can successfully be deployed on the GlassFish
execution platform. Further, for profile 1-4 dummy backend
systems have been created for testing the generated BPEL
processes. As expected, testing revealed several errors
although the according BPEL processes deployed without
any problems. Figure 4 shows the dummy interface for
incoming messages which is used to acknowledge or decide
upon system messages and business documents. In order to
check the existence of encryption and signature tags on the
network level, the network protocol analyzer WireShark4

has been used. In so far, not having tested profiles 5-8 using
such dummy backends limits the results of the work at hand
to some extent. Nonetheless, supporting B2Bi relevant QoS
attributes during ebBP to BPEL translations is possible.
A limitation of the openESB BPEL engine is that access to
SOAP headers is not possible. Therefore, XML signatures
had to be created using a utility QoS Web service although
WS-Security offers the possibility for automatically
generating signatures. Access to signatures is necessary as
non-repudiation requires archival storage of signatures.

Figure 4. Backend interface for incoming messages

8. Related Work
There are various works that are similar to our approach

with respect to translating choreographies into orchestra-
tions. The majority of these does not describe a proof-of-
concept implementation of a working translator ([13]), does
only consider BusinessTransactions and not BusinessCollab-
orations ([19]), does not cover B2Bi QoS properties ([10]),
and/or derives BPEL from WS-CDL and not ebBP ([12],
[11]). As far as we know full support for ebBP QoS attributes
during translation to BPEL has not yet been described.
Closest to our approach in terms of QoS support is [9] but,
there, a completely different set of QoS attributes which are
performance metrics related is used and the processes in
their work have to be extended by “private business logic”.
We are following a different approach that assumes backend

4. http://www.wireshark.org/

https://jaxb.dev.java.net/
http://www.wireshark.org/


system interfaces so that the BPEL processes do not have
to be edited after generation.
With respect to using WS-CDL instead of ebBP as chore-
ography language we claim that WS-CDL may be a good
choice for many choreographies due to its tight relationship
with WSDL as opposed to ebBP, but ebBP is particularly
useful for B2Bi due to its better support for specifying QoS
features (though non-standardized extensions are available
[9]). Also, the embedding of ebBP in the ebXML framework
seems to be advantageous for B2Bi scenarios.
Finally, it should be noted that integration standards organi-
zations frequently do specify how to perform BusinessTrans-
actions or similar concepts at runtime, e.g., RosettaNet
specifies the so-called RosettaNet Implementation Frame-
work which defines how to perform RosettaNet Partner
Interface Processes. But these standards typically do not
offer the generation of executable implementations of control
processes as we do with our translator.

9. Conclusion and Future Work

In conclusion, this paper shows that support for the most
important B2Bi QoS properties during translating ebBP
choreographies into BPEL orchestrations is possible. An
integration architecture for executing these orchestrations as
well as a working proof-of-concept implementation of an
ebBP to BPEL translator have been described. The work
was evaluated using real world B2Bi processes, namely the
NES profiles.
Currently, only the ebBP modeling elements needed for
modeling NES profiles can be translated. Future work there-
fore concerns full support for all ebBP modeling elements,
in particular multi-party processes and parallel execution
using forks and joins. Further, extending the support for
more technical details of QoS properties, e.g., the encryp-
tion algorithms to use, by using functionalities of ebXML
Collaboration Protocol Agreement (CPA) is planned. Finally,
our ebBP-to-BPEL translator currently assumes a top-down
development model which is also due to the BPEL process
structures created. Therefore, a modular structure that lends
itself better to bottom-up or meet-in-the-middle approaches
is planned.

References

[1] D. M. Lambert and M. C. Cooper, “Issues in supply chain
management,” Industrial Marketing Management, vol. 29,
no. 1, pp. 65 – 83, 2000.

[2] B. Medjahed, B. Benatallah, A. Bouguettaya, A. H. H. Ngu,
and A. K.Elmagarmid, “Business-to-business interactions: is-
sues and enabling technologies,” The VLDB Journal, vol. 12,
no. 1, pp. 59–85, 2003.

[3] C. Schroth, T. Janner, and V. Hoyer, “Strategies for cross-
organizational service composition,” in MCETECH ’08: Proc.
of the 2008 Intern. MCETECH Conference on e-Technologies.
Washington, DC, USA: IEEE CS, 2008, pp. 93–103.

[4] A. Schönberger and G. Wirtz, “Taxonomy on consistency
requirements in the business process integration context,” in
2008 Conf. on Software Engineering and Knowledge Engi-
neering (SEKE’2008), Redwood City, USA, July 2008.

[5] OASIS, Web Services Business Process Execution Language,
2nd ed., April 2007.

[6] ——, “Web Services Security v1.1,” February 2006.

[7] OASIS, Web Services Reliable Messaging (WS-1 Reli-
ableMessaging) Version 1.1, OASIS, January 2008.

[8] OASIS, ebXML Business Process Specification Schema Tech-
nical Specification, 2nd ed., OASIS, December 2006.

[9] F. Rosenberg, C. Enzi, A. Michlmayr, C. Platzer, and S. Dust-
dar, “Integrating quality of service aspects in top-down busi-
ness process development using WS-CDL and WS-BPEL,”
in EDOC’07: Proc. of the 11th IEEE Intern. Enterprise
Distributed Object Comp. Conf., Washington DC, USA, 2007.

[10] B. Hofreiter and C. Huemer, “A model-driven top-down
approach to inter-organizational systems: From global chore-
ography models to executable BPEL,” in Joint Conf. CEC’08
EEE’008. Washington DC, USA: IEEE, 7 2008.

[11] J. Mendling and M. Hafner, “From WS-CDL choreography
to BPEL process orchestration,” Journal of Enterprise Infor-
mation Management (JEIM)., vol. 21, no. 5, 2008.

[12] I. Weber, J. Haller, and J. A. Mülle, “Automated derivation of
executable business processes from choreographies in virtual
organizations,” in In: Multikonferenz Wirtschaftsinformatik
2006 (MKWI 2006), Band 2, XML4BPM Track, GITO-Verlag
Berlin, Mar. 2006, pp. 313–327.

[13] J.-H. Kim and C. Huemer, “From an ebXML BPSS chore-
ography to a BPEL-based implementation,” SIGecom Exch.,
vol. 5, no. 2, pp. 1–11, 2004.

[14] G. Dobson, R. Lock, and I. Sommerville, “QoSOnt: a QoS
ontology for service-centric systems,” in EUROMICRO’05:
Proc. of the 31st EUROMICRO Conf. on Software Eng. and
Advanced Applications. Washington DC, USA: IEEE, 2005.

[15] RosettaNet Implementation Framework: Core Specification,
V02.00.01 ed., RosettaNet, www.rosettanet.org, March 2002.

[16] J. Bosak, T. McGrath, and G. K. Holman, Universal Business
Language v2.0, OASIS, December 2006.

[17] Northern European Subset Profiles, 2nd ed., Northern
European working group for development of a subset for UBL
2.0, July 2007. [Online]. Available: http://www.nesubl.eu

[18] A. S. Vedamuthu, D. Orchard, F. Hirsch, M. Hondo, P. Yend-
luri, T. Boubez, and Ümit Yalçinalp, Web Services Policy 1.5
- Framework, W3C, September 2007.

[19] B. Hofreiter, C. Huemer, P. Liegl, R. Schuster, and M. Zaple-
tal, “Deriving executable BPEL from UMM business trans-
actions,” in IEEE SCC. IEEE CS, 2007, pp. 178–186.

http://www.nesubl.eu

	1 Introduction
	2 Basics
	3 Approach
	4 Use Case
	5 ebBP Model
	6 Translation Concept
	7 Practical Experience
	8 Related Work
	9 Conclusion and Future Work
	References

