
Introducing Partner Shared States into
ebBP to WS-BPEL Translations

Christoph Pflügler
Inter-organizational Systems Group

University of Augsburg
Augsburg, Germany

christoph.pfluegler@wiwi.uni-
augsburg.de

Andreas Schönberger
Distributed and Mobile Systems Group

University of Bamberg
Bamberg, Germany

andreas.schoenberger@uni-
bamberg.de

Guido Wirtz
Distributed and Mobile Systems Group

University of Bamberg
Bamberg, Germany

guido.wirtz@uni-bamberg.de

ABSTRACT
Business-to-Business integration (B2Bi) as a core concept
of Supply Chain Management (SCM) is a key success fac-
tor for enterprises today. Frequently, choreography models
are used for agreeing about the overall message exchanges
among integration partners, while orchestration models are
used to specify the local message flow of each individual par-
ticipant. Choreography standards like ebXML BPSS (ebBP)
and orchestration standards like WS-BPEL have been devel-
oped which promise to provide standards based support for
interoperability among integration partners. Further, the
translation of ebBP models to WS-BPEL models has been
proposed in order to ensure, among others, conformance of
orchestrations to choreographies.
This paper focuses on the agreement function of choreogra-
phy models and introduces the concept of partner-shared-
states to ebBP models in order to better capture the effect
of business document exchanges. The translation of a re-
stricted set of partner-shared-state based ebBP models to
WS-BPEL has been implemented in order to prove the fea-
sibility of the approach. The resulting WS-BPEL processes
are used to guarantee an order of message exchanges that
is choreography-compliant, while a backend services inter-
face encapsulating business logic is used for providing the
control process with business documents, business decisions
and events. The overall approach is evaluated using a Roset-
taNet PIP based use case.

Keywords
B2Bi, ebXML BPSS, WS-BPEL, state based modeling, trans-
lation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
iiWAS2009 December 14–16, 2009, Kuala Lumpur, Malaysia
Copyright 2009 ACM 978-1-60558-660-1/09/0012 ...$10.00.

1. INTRODUCTION
In today’s competitive world, the success of an enterprise

heavily depends upon effective integration along the enter-
prise’s supply chain (cf. [8]). B2Bi as a core task of SCM
(cf. [4]) therefore deserves special attention by industry and
academia. B2Bi particularly addresses the integration of
processes crossing enterprise boundaries where central IT in-
frastructure for integration partners frequently is not avail-
able. Further, personnel from different enterprises with dif-
fering background and terminology is participating. Chal-
lenging tasks concerning various forms of consistency result
from this situation. According to [16], tasks such as agree-
ment among integration partners upon the type and order
of business document exchanges, compatibility between each
integration partner’s local process definition with respect to
these exchanges, interoperability concerning the communi-
cation technologies applied as well as synchronizing state be-
tween IT systems are of paramount importance. One way to
tackle these problems is using a so-called choreography lan-
guage for capturing the global message exchanges and then
translating the choreography model into participant specific
orchestrations that define the types and sequence of the mes-
sages a single integration partner is supposed to receive and
send. While a choreography model can be used as means for
agreement, a sound derivation of orchestration models from
a choreography model is one means to ensure compatibil-
ity between the partner’s local processes. Interoperability
of IT systems heavily depends on the communication tech-
nology applied whereas state synchronization can either be
realized by using suitable communication primitives or by
implementing distributed commit protocols on an applica-
tion level.

In practice, one choreography language of choice is ebBP
[12] that particularly focuses on business collaborations. ebBP
is an official OASIS1 standard and thus not only serves
for specifying models to agree on but also supports com-
munication among integration partners by defining a com-
mon vocabulary and common rules for defining choreogra-
phies. Regarding communication technology, the goals of de-
coupling systems, realizing interoperability and using com-

1http://www.oasis-open.org

http://www.oasis-open.org

monly available Internet protocols can be achieved by ap-
plying Web Services. In the area of Web Services based
B2Bi, WS-BPEL [13] currently is the most widespread stan-
dard for specifying the process orchestration of each part-
ner. ebBP defines so-called BusinessTransactions for ex-
changing business documents and proposes a protocol based
on transmission notifications for performing BusinessTrans-
actions. Hence, implementing this protocol in WS-BPEL
(BPEL for short) is one way to achieve state synchroniza-
tion. In this scenario, automatically deriving BPEL orches-
trations from ebBP choreographies ensures compatibility be-
tween each partner’s local process and reduces development
time as well. Accordingly, translating ebBP into BPEL al-
ready has been proposed in literature [7].

This paper adopts the B2Bi approach of translating ebBP
choreographies into BPEL orchestrations, but particularly
focuses on the applicability of so-called shared states as intro-
duced in [15]. Shared states support the agreement function
of choreography models by capturing the effect of business
document exchanges, allow for the definition of state spe-
cific timeouts, provide natural synchronization points in the
collaboration’s control flow and define the basis for intelligi-
ble communication of the collaboration’s progress. Section 2
first describes how shared states can be represented in ebBP
in a standard compliant way. A restricted set of ebBP mod-
els is then defined for which the translation to BPEL is to
be investigated. Section 3 introduces an example of such a
restricted model that is also used to evaluate the approach
later on. In section 4, the proposed integration architec-
ture for executing BPEL processes is described whereas the
translation of ebBP to BPEL is discussed in 5. In doing so,
this paper sets out to explore the practical feasibility of the
approach rather than proving its correctness. The BPEL
processes resulting from translation are validated by check-
ing their executability on the Apache ODE2 BPEL engine.
Section 6 presents results as well as practical experience in
implementing the translation. Finally, section 7 discusses
related work and section 8 the contributions of this paper as
well as future work.

2. ebBP MODEL
This section gives a short introduction to ebBP and then

motivates the introduction of the shared state concept as
well as the related concept of micro-choreographies to ebBP.
Sections 2.1 and 2.2 then describe how these concepts can
be represented in ebBP in a standard compliant way so that
standard tools can be used for modeling. Section 2.3 finally
describes the composition of these concepts in ebBP collab-
orations and informally defines the range of ebBP models
that can be translated using our approach (see section 5).

ebBP is a choreography language based on the concept of
BusinessTransactions3 that are used for exchanging one or
two business documents between the so-called Requesting-
Role and RespondingRole. So-called BusinessCollaborations
with at least two roles (integration partners) can be used to
build complex integration models. Therefore, usual control
flow constructs like Decision, Fork or Join can be used to
choreograph BusinessTransactionActivities (BTA) / Busi-
nessCollaborationActivities (CA) that specify the actual exe-
cution of BusinessTransactions / BusinessCollaborations by

2http://ode.apache.org/
3In this section, ebBP keywords are emphasized.

adding execution parameters such as TimeToPerform and
by mapping the roles of the performed BusinessCollabora-
tion to the roles of the performed activity. Finally, QoS
properties may be specified for the elements described and
BusinessDocument definitions can be imported from busi-
ness document libraries like RosettaNet4 or UBL5.

As ebBP models are the basis for agreement upon the
choreography among the integration partners of a B2Bi, sup-
port of communication among personnel of the integration
partners is of paramount importance. Therefore, the con-
cept of so-called shared states commonly left/reached by all
integration partners using so-called micro-choreographies as
introduced in [15] is applied to ebBP modeling. This con-
cept is based on the perception that the purpose of a business
collaboration is essentially the consistent change of state of
each integration partner’s systems. Thus explicitly modeling
these shared states helps in specifying the actually intended
effect of the overall collaboration as well as the intended
effect of exchanging business documents. The concept of
micro-choreographies helps in abstracting from several busi-
ness document exchanges that commonly lead to the change
of a shared state and eases the handling of communication
and processing errors. For example, assume a quote and an
order are to be exchanged within a B2Bi and that at the
beginning of the collaboration neither a quote nor an order
have been exchanged. Then it would be the purpose of a
micro-choreography to switch this shared state Start to the
next shared state Quote by exchanging a quote request and
quote document. The Quote state would then indicate that a
valid quote is present but not (yet) an order. An order could
be existent in the next state Order which, again, would be
reached by means of a micro-choreography exchanging one
or more business documents. Note that, using shared states,
the integration partners could easily specify whether the ex-
changed quote should still be valid after having reached the
shared state Order. Further, shared states are required
to specify certain types of timeouts, e.g., how long a quote
should remain valid, and which states are to be switched to
when timeouts or errors occur during the course of micro-
choreographies (cf. [15]). A possible scenario taking advan-
tage of that feature is a supplier reserving resources, such
as raw materials, when sending a quote to a customer and
subsequently entering a shared state Quote (cf. section 3).
The expiration time of the quote exchanged can easily be
specified as timeout of the shared state Quote. If the cus-
tomer does not respond to the quote before the timeout oc-
curs, the overall collaboration could, e.g., switch to a shared
state Failure and the supplier would be allowed to release
the resources reserved. Also, modeling shared states ex-
plicitly introduces natural synchronization points to both,
choreography and orchestration models of business collab-
orations. On the choreography level, this results in more
compact models of collaborations with complex control flow.
This can be seen by translating the use case of section 3 into
a model that does not make use of shared states (omitted
here due to space limitations). On the orchestration level,
this results in handy reference points for attaching control
flow logic. Finally, shared states define the basis for intel-
ligible communication of the collaboration’s progress which
may be used for notifying process stakeholders.

4http://www.rosettanet.org
5http://www.oasis-open.org/committees/ubl/

http://www.rosettanet.org
http://www.oasis-open.org/committees/ubl/

2.1 Modeling micro-choreographies
Micro-choreographies are a means for aggregating isolated

document exchanges into units of correlated document ex-
changes that together lead to a shared state change. ebBP
BusinessTransactions are a natural fit for representing micro-
choreographies of up to two business document exchanges:
BusinessTransactions add accompanying business signals to
business document exchanges, and a standard way for com-
puting the status of a BTA is defined in ebBP (cf. [12] sec.
3.6.3).

For the purpose of the work at hand, i.e., showing the
feasibility of translating shared state based ebBP models
into BPEL orchestrations, the restriction of micro-choreo-
graphies composed of only two document exchanges is ac-
cepted and thus BusinessTransactions are chosen for repre-
senting micro-choreographies. Note that “multi-document”
micro-choreographies could be modeled in ebBP using Busi-
nessCollaborations which then could be composed using CAs.

2.2 Modeling shared states and timeouts
There is no ebBP construct that directly matches the con-

cept of a shared state so these are emulated. Generally
speaking, a state can be modeled with an ebBP Join con-
struct followed by a Fork construct. However, ebBP pro-
hibits directly linking Joins and Forks as the correspond-
ing fromBusinessStateRef and toBusinessStateRef attributes
may only reference BTAs or CAs (cf. [12] sec. 3.8.2). To
overcome this constraint in a standard compliant manner,
the concept of an EmptyBTA based on the extensible ebBP
transaction type DataExchange is introduced that serves as
a target for linking to a shared state and for connecting the
Join and Fork of a shared state.

Listing 1 shows the ebBP representation of the shared
state Quote (cf. above and figure 1). The EmptyBTA before
the shared state’s Join is used as target of ebBP Decisions
that are not allowed to directly link to Joins (cf. [12] sec.
3.8.2). The shared state’s Join links to another EmptyBTA
that is connected to the shared state’s Fork. This Fork then
specifies a ToLink for every micro-choreography that is per-
missible to be performed from this shared state. Shared
state timeouts, i.e., the point in time when shared states
should be left without performing a BTA, can also be spec-
ified on this Fork. In case such a timeout occurs, it has to
be switched to the corresponding Join as required by ebBP
(cf. [12] sec. 3.4.11.1).

As the exact semantics of a corresponding Join is not de-
fined in ebBP, the work at hand computes the correspond-
ing Join as the first common Join that can transitively be
reached by all ToLinks of all Decisions attached to all BTAs
the considered Fork links to. This is one of the reasons why
a shared state is not simply modeled as an EmptyBTA with
a following Fork but uses a Join and another EmptyBTA.

Employing two EmptyBTAs allows for different semantics
when linking to a shared state with respect to timeouts: In
case of linking to the EmptyBTA before a shared state, its
timeout is reset whereas linking to the EmptyBTA within
the shared state does not have this effect. The latter case is
particularly useful if protocol failures occur during perform-
ing a subsequent BTA which means that the shared state
actually has not been left. Note that ebBP Joins and Forks
are only used for modeling states and are not allowed else-
where in the collaboration description.

Listing 1: Example ebBP Model of a Shared State
1

2 <!-- State Quote -->
3 <BusinessTransactionActivity

businessTransactionRef="empty"
4 nameID="empty_before_Quote">
5 <TimeToPerform ></TimeToPerform >
6 <Performs currentRoleRef="Buyer"

performsRoleRef="empty1"/>
7 <Performs currentRoleRef="Seller"

performsRoleRef="empty2"/>
8 </BusinessTransactionActivity >
9

10 <Join waitForAll="false" nameID="Quote">
11 <FromLink fromBusinessStateRef="

empty_before_Quote"/>
12 <FromLink fromBusinessStateRef="

empty_before_Quote"/>
13 <ToLink toBusinessStateRef="
14 empty_in_Quote"/>
15 </Join>
16

17 <BusinessTransactionActivity
businessTransactionRef="empty"

18 nameID="empty_in_Quote">
19 <TimeToPerform ></TimeToPerform >
20 <Performs currentRoleRef="Buyer"

performsRoleRef="empty1"/>
21 <Performs currentRoleRef="Seller"

performsRoleRef="empty2"/>
22 </BusinessTransactionActivity >
23

24 <Fork nameID="fork_Quote" type="XOR">
25 <TimeToPerform duration="P3D"></TimeToPerform

>
26 <FromLink fromBusinessStateRef="

empty_in_Quote"/>
27 <ToLink toBusinessStateRef="

BTA_3A10_NotifyOfQuoteAck"/>
28 <ToLink toBusinessStateRef="

BTA_3A10_NotifyOfQuoteAck"/>
29 </Fork>

2.3 Composing micro-choreographies and
shared states

This section first describes the interplay of micro-choreogr-
aphies and shared states and then characterizes the set of
ebBP collaborations that is used for checking the practica-
bility of the ebBP to BPEL translation approach.

Basically, a shared state is entered by reaching the Emp-
tyBTA before the shared state. The Fork of the shared
state then links to all BTAs (micro-choreographies) that are
permissible for the respective shared state. Each of these
BTAs (not EmptyBTAs) must be followed by an ebBP De-
cision that evaluates the outcome of the BTA. Predefined
ebBP ConditionGuardValues and user-defined DocumentEn-
velopes are used for determining the follow-on shared state
of a Decision. In case an ebBP AnyProtocolFailure is de-
tected, the Decision typically links back to the EmptyBTA
within the shared state the BTA to be evaluated was started
from. Otherwise, it is linked to the EmptyBTA before (the
same or another) a shared state. In general, automated
model translation requires accepting syntactic restrictions
(cf. [6]). The work at hand targets at evaluating the in-
corporation of shared states into ebBP2BPEL translations
of real-world size collaborations. Balancing implementation
effort of the ebBP to BPEL translator and expected benefit
for the evaluation of the approach, the set of ebBP mod-
els that is considered for translation is a subset of the class
of multi-transmission interactions as defined in [2] with the
special restriction that only two collaboration partners are
allowed:

• A choreography is modeled as a single ebBP Business-
Collaboration. Hierarchical compositions are not sup-
ported.

• Only binary collaborations are supported, i.e., the num-
ber of integration partners within the collaboration is
limited to two.

• A collaboration starts with an ebBP Start that imme-
diately links to the initial shared state of the collabo-
ration.

• ebBP Decisions are only allowed after BTAs.

• Alternative paths are realized by ebBP Decisions and,
by ebBP Forks used for representing shared states.

• Looping is realized by Decisions that link back to shared
states that have been visited before.

• The only case in which a Decision branch does not
link to a shared state is when process termination is
detected. In this special case a Decision links to an
EmptyBTA before an ebBP Success or Failure state.

• A choreography ends when a final state, i.e., an ebBP
Success or Failure state is reached. Multiple Success
and Failure states are allowed per collaboration. As
multiple instances of BTAs are not allowed for and as
state is synchronized after each BTA (there are only
two participants), a choreography immediately ends
when a final state is reached.

• At any point in time, there is at most one active BTA
(no multiple instances). In order to ensure this, ebBP
Forks have to set the type attribute to XOR and ebBP
Joins must have the waitForAll attribute set to false.

• An EmptyBTA may only link to one single ebBP Join
or Fork element.

Note that ebBP does not define its execution semantics for-
mally. Therefore, this work realizes the message flow of
BusinessTransactions as described in section 4.1 and then
applies this message flow iteratively as defined by the links
between shared states, BTAs (micro-choreographies) and
Decisions. Additional messages then are only needed for
informing backend implementations about the current col-
laboration state and for deciding which BTA to execute in
case multiple BTAs are triggered concurrently. By translat-
ing ebBP collaborations as defined above to BPEL this work
provides an operational semantics of ebBP.

3. USE CASE
In general, our approach targets at B2Bi scenarios that use

a transactional form of business document exchanges lead-
ing to shared state changes. In so far, compositions based
on document exchanges of arbitrary document libraries such
as RosettaNet, UBL or NES can benefit from the work pre-
sented here. The use case for evaluating the work at hand
is based on RosettaNet Partner Interface Processes (PIPs)
which describe the application context, the content and the
parameters for the electronic exchange of one or two business
documents. A use case consisting of nine shared states and
nine PIPs has been created covering the concepts described
above. The RosettaNet document type definitions have been

Figure 1: Use case for evaluating the work at hand

imported by means of ebBP BusinessDocumens and their
flow has been remodeled using ebBP BusinessTransactions.
The use case is taken from RosettaNet PIP segment 3A and
models a process for negotiating a contract. The size of stan-
dard processes as defined by the Northern European Subset6

(NES) is comparable to our use case, so the use case’s size
can be considered to be realistic.
An excerpt of the use case is given as an informal state ma-
chine diagram in figure 1. The start of the collaboration
is represented by the unique start element. Each shared
state is represented as a state and the executions of PIPs
as BTAs are represented as transitions. The event part of
a transition is used to name the BTA (PIP) to be executed
and the guard part of a transition is used to capture the
outcome of BTAs. As decisions are not explicitly visualized,
there may be multiple transitions for the same shared state
that are triggered by the same event. The condition guards
of the particular transitions, however, are mutually exclu-

6http://www.nesubl.eu/

http://www.nesubl.eu/

sive. The permissible ebBP guard values for the use case are
AnyProtocolFailure (denoted TF), BusinessFailure or Busi-
nessSuccess. AnyProtocolFailure captures arbitrary techni-
cal problems during performing BTAs. If no such problems
occur, BusinessSuccess indicates that integration partners
did achieve their goals from a business point of view whereas
BusinessFailure indicates they didn’t. Finally, guard values
based on DocumentEnvelopes (denoted with a leading DE:)
that relate to the content of the latest business document
exchanged using suitable XPath expressions are allowed as
well. Two final states are used to represent an ebBP Fail-
ure state (on the left-hand side) and an ebBP Success state
(on the right-hand side). Although the execution of PIP_3A9
in state PendingContractChangeSI(SellerInitiated) may
terminate with a BusinessSuccess guard value, it still rep-
resents a failure from the overall collaboration perspective.
Note that state changes because of timeouts are not visual-
ized.

4. INTEGRATION ARCHITECTURE
This section describes the proposed integration architec-

ture for realizing B2Bi because it heavily influences the deriva-
tion of BPEL orchestration models from ebBP choreogra-
phies. The application of one BPEL process per integra-
tion partner, as opposed to applying a single central BPEL
process, is proposed because central IT infrastructure is as-
sumed not to be available by integration partners or simply
not intended. According to [17] this solution (apparently)
scales better than using one single BPEL process and there-
fore seems to support a broader range of B2Bi scenarios.
Further, B2Bi projects usually have to consider the invest-
ments of integration partners in existing IT infrastructure
and therefore have to address the problem of interfacing
with existing systems. If a B2Bi project simply automates
an existing process then there is a high probability that inte-
gration partners already have systems in place for evaluating
business documents, taking business decisions and capturing
real-world events such as “a new order has to be placed”.
Therefore, the application of so-called control processes that
separate the message flow of a collaboration from the ac-
tual business logic is proposed. It’s the control processes’
task to ensure that the message flow at runtime conforms to
the choreography defined. The actual business logic is en-
capsulated in so-called backend services that wrap existing
systems. This separation of concerns is also advantageous
in terms of software lifecycle management because the inte-
gration partners’ processes can be generated such that they
do not have to be adapted after generation. This approach
is also applicable for an integration partner that does not
yet have systems implementing business logic. Note, that
this work focuses on the message flow among the control
processes and backend services while, clearly, there’s much
more to a B2Bi project, e.g., data mappings and adaptations
of business functions.

4.1 Message Flow
The core task in describing the message flow between con-

trol processes and backend services is the mapping of BTAs.
The flow of BusinessCollaborations can then be derived by
repeating the message flow of the respective BTAs according
to the ebBP choreography.
Figure 2 uses a UML sequence diagram to show an ideal-
ized flow of a BTA that exchanges two documents and em-

ploys both ebBP ReceiptAcknowledgements (RA) and Ac-
ceptanceAcknowledgements (AA) as accompanying business
signals. BTAs that only exchange one business document or
do not employ business signals can be mapped analogously.
Figure 2 distinguishes between a requesting role for the in-

Figure 2: Idealized message flow of a BTA

tegration partner who sends the first business document of
the BTA and a responding role for the sender of the reply
business document. The message flow of the BTA starts out
with the backend of the requesting role capturing the real
world event that a new BTA has to be performed and thus
sends the request BusinessDocument (BD) to the requesting
role’s control process. The latter then passes the Request
BD on to the responding party’s control process that sub-
sequently sends the BD to the responding party’s backend
services for obtaining a RA and an AA or the corresponding
exceptions (RAE and AAE). These business signals are then
sent back to the requesting role’s control process for indicat-
ing that the request BD is readable and has been accepted
for business processing (cf. [12]). The same procedure is
afterwards performed for the response BD using exchanged
roles.
After having exchanged all business documents and busi-
ness signals, both control processes call their backend ser-
vices for evaluating the outcome of the BTA according to
the messages exchanged. Clearly, each integration part-
ner has to apply the same evaluation rules agreed upon in
the ebBP choreography. Therefore, the work at hand em-
ploys ebBP ConditionGuardValues (CGV) and ebBP Doc-
umentEnvelopes (DE), though for many business collabora-
tions more sophisticated means will be necessary. A possible
solution may be the definition of Schematron7 files and thus
it is assumed that such an agreement can be made.
Apart from deciding which shared state to switch to after
a BTA, state changes have to be performed. We propose

7http://www.iso.org/PubliclyAvailableStandards

http://www.iso.org/PubliclyAvailableStandards

that such state changes are not performed until the end of a
BTA. In order to perform state changes that are consistent
among integration partners, distributed agreement has to be
achieved. The realization of a BTA makes a step towards
distributed agreement by applying business signals for ex-
cluding some error cases, but some business scenarios may
require true distributed commitment. Though this is not yet
implemented there are solutions to this problem available.
One solution is to simply map the well-known Two-Phase-
Commit protocol (2PC) to Web Services where the subject
of agreement would be that all BTA messages have been ex-
changed (see [14] for details). Alternative solutions could be
based on standards such as WS-ReliableMessaging v1.28 or
Web Services Transaction v1.29.

4.2 BPEL and WSDL Artifacts
As pointed out above, this work proposes the generation

of BPEL processes for implementing control processes and
WSDL interfaces for encapsulating business logic. Espe-
cially the WSDL files for backend services may contain sen-
sitive information, e.g., endpoint references, that should be
hidden from the integration partner. Therefore, the struc-
ture of BPEL and WSDL files as depicted in figure 3 is pro-
posed. Horizontal gray bars represent WSDL file types, the
black squares in such a gray bar represent multiple copies
of the same WSDL file. The vertical bars without filling
show WSDL-files grouped together in sub packages, either
for the purpose of providing a backend interface or a control
process.

An ebBP business collaboration results in one BPEL pro-
cess (RoleX.bpel) per participating party and several WSDL
interfaces. common msg state.wsdl contains the definition
of the collaboration’s shared states and defines a WSDL
message for communicating these. stateReceiverX.wsdl im-
ports common msg state.wsdl and moreover defines the WS
DL portType as well as the service definition and partner-
LinkType of the Web Service (one per participating party)
used for notifying the backend about the current process
state. In figure 3, the two grey bars denoted stateReicev-
erX.wsdl represent the same WSDL file except for the port
addresses that are used for signaling process states which
are partner specific.
Further, for each BPEL process, RoleX.wsdl and RoleX back
end.wsdl are defined. RoleX.wsdl contains all portTypes,
bindings and service definitions required for inter-process
communication, while RoleX backend.wsdl contains compo-
nents for communication that is triggered by the backend
system. Furthermore, these WSDL-files contain all related
partnerLinkTypes, bindings, service definitions and variable
properties. Both import the common message WSDL file
(common msg <BTA-NameID>.wsdl) generated from ev-
ery BTA in the business collaboration to be implemented. If
a participating party never is the initiator of a BTA through-
out a complete collaboration, the RoleX backend.wsdl only
contains the WSDL definitions tag without further con-
tent or document imports.

A BTA results in three different WSDL files. Two RoleX c
ommon <BTA-NameID>.wsdl files that contain portType,
binding, service definition, partnerLinkType and variable
properties and import the aforementioned common msg <B
TA-NameID>.wsdl containing common Types and Messages.

8http://www.oasis-open.org/committees/ws-rx/
9http://www.oasis-open.org/committees/ws-tx

Figure 3: WSDL import relations

Exactly the same common msg <BTA-NameID>.wsdl file
is distributed over the entire process to ensure seamless
message routing while hiding system internal knowledge like
endpoint references (in RoleX common <BTA-NameID>.w
sdl) from the business partners. Together, RoleX common
<BTA-NameID>.wsdl and common msg <BTA-NameID>
.wsdl form the interface for a role specific backend Web Ser-
vice (per BTA), indicated by vertical bars without filling.

Altogether, each BPEL process imports common msg sta
te.wsdl as well as the party specific WSDL files stateRe-
ceiverX.wsdl, RoleX.wsdl and RoleX backend.wsdl. More-
over, the party specific WSDL interface generated for each
BTA (RoleX common <BTA-NameID>.wsdl, common msg
<BTA-NameID>.wsdl) is imported.

5. ebBP TO BPEL TRANSLATION
As pointed out in section 1, automatically deriving or-

chestration models from a common choreography definition
is advantageous in terms of development speed and confor-
mance. Therefore, this work presents a prototypic translator
for the set of ebBP models defined in section 2.3. Such a
translator supports conformance provided that it works“cor-
rectly”. We claim that this is possible because validation of
the translator is a one-time effort.

http://www.oasis-open.org/committees/ws-rx/
http://www.oasis-open.org/committees/ws-tx

The translator covers the generation of BPEL processes,
WSDL interfaces and deployment descriptors for the Apache
ODE BPEL engine that has been used. This section con-
centrates on the most interesting part, i.e., the mapping
of ebBP BusinessCollaborations, BTAs, RequestingBusines-
sActivities and Decisions. Note that BPEL elements not
required for the understanding of the overall mapping con-
cept are omitted.

Listing 2: BPEL process for a BusinessCollaboration
1 <process ... name="UseCase">
2 <!-- WSDL imports here -->
3 <!-- parterLinks here -->
4 <!-- variables here -->
5 <!-- correlation set here -->
6 <scope name="UseCase">
7 <eventHandlers >
8 <onAlarm >
9 <!-- collaboration timeout handling -->

10 </onAlarm >
11 </eventHandlers >
12 <sequence >
13 <!-- initialize process state -->
14 <while>
15 <condition >’true’</condition >
16 <sequence >
17 <!-- switch over states here -->
18 <if>
19 <!-- state AcceptableQuote reached -->
20 <scope name="AcceptableQuote_Scope">
21 <!-- declare request variables for

permissible BTAs here -->
22 <eventHandlers >
23 <onAlarm >
24 <!-- timeout handling for shared state

AcceptableQuote -->
25 </onAlarm >
26 <eventHandlers >
27 <while>
28 <condition ><!-- shared state not left

--></condition >
29 <sequence >
30 <invoke operation="

SIGNAL_BACKEND_CURRENT_STATE" ../
>

31 <pick>
32 <!-- Permissible BTAs BPEL Code -->
33 </pick>
34 </sequence >
35 </while>
36 </scope>
37 </if>
38 <!-- ... switch over states ... -->
39 </sequence >
40 </while>
41 </sequence >
42 </scope>
43 </process >

The description starts out with the BusinessCollaboration
construct that is mapped to a single BPEL process (per
participant) that is depicted in simplified form in listing 2.
Within the process several global “configurations” are spec-
ified such as WSDL imports and partnerLink definitions
before a scope for the overall collaboration is defined. An
onAlarm element is attached to this scope for capturing and
handling timeouts defined for the overall collaboration. Fur-
ther, a sequence is defined within this scope where process
variables are initialized and a while construct is used that
is executed until the process has terminated. For represent-
ing the collaboration’s shared states, simple if elements are
used within this while element to determine the shared state
the collaboration is currently in and for each shared state
another scope is defined that captures its “behavior”. This
scope also declares the variables required to save messages
that can trigger the permissible BTAs of the shared state.

Again, in case a timeout is defined for the shared state, an-
other onAlarm construct is used to capture and handle the
shared state’s timeout. Then a while element is used to
check whether the shared state has been left yet. If not,
an invoke is used in order to notify the backend about the
current process state which enables process stakeholders to
be informed about the collaboration’s progress. After that,
a pick is used to wait for the backend or the integration
partner’s control process to trigger any BTA that is permis-
sible for the respective shared state. The execution of such
a BTA may then terminate the shared state’s while using
according variable assignments.

Table 1: BPEL production rules for ebBP Busi-
nessTransactionActivity

Role BPEL Process Elements
- enclosing onMessage, receiving a

Initiator triggering message from integration
partner or backend system

+ - enclosing scope for complete BTA
- all variables required for the ebBP

Responder Requesting-/RespondingBA and the ebBP
Decision

- catch blocks for all ebBP failure types
containing the corresponding reaction as
specified in the ebBP
BusinessCollaboration

- catchAll block containing reaction as
specified in ebBP BusinessCollaboration
for AnyProtocolFailure

- onAlarm to implement the
TimeToPerform parameter specified for
the BTA

- sequence containing the BPEL code
for the ebBP constructs (in this order):
RequestingBA, RespondingBA, Decision.
For the respective production rules see
tables 2 and 3.

Having described the mapping of shared states, tables 1, 2
and 3 give a tabular overview of the most important BPEL
elements used to translate a BTA with an attached Deci-
sion and indicate the purpose of their particular usage. The
elements are listed in the order of their occurrence in the
BPEL process. The depicted BTA contains a ReceiptAc-
knowledgement as well as an AcceptanceAcknowledgement
signal. Further, all timing parameters offered for a BTA
by the ebBP specification [12] are set. If only some or none
of the signals for and parameters of a BTA are specified, the
BPEL translation is a corresponding subset of the depicted
one. As the mapping of a RespondingBusinessActivity is
analogous to a RequestingBusinessActivity, only a Request-
ingBusinessActivity is described here. It is important to
know that in BPEL, a scope in which a fault occurred is
considered to have completed unsuccessfully [11]. Throwing
a fault terminates all scopes this fault is thrown in or
passed through until it is handled in some scope. Hence, an
occurrence of an onAlarm based timeout in combination with
throwing a fault terminates the BTA and is handled by the
faultHandlers of the scope enclosing the BPEL code of a
BTA. ReceiptAcknowledgement/-Exception (RA/RAE) and
AcceptanceAcknowledgement/-Exception (AA/AAE) are pro-
cessed concurrently as suggested by the ebBP specification

([12], sec. 3.4.9.3.3). A process tries to get a valid RA/RAE
by sending the corresponding BD to the process of the in-
tegration partner until the specified ebBP retryCount is ex-
ceeded or a timeout occurs. Further, if both signal types
are used, it waits to receive a valid AA/AAE until the oc-
currence of a timeout. At the end of the BTA mapping, an
ebBP Decision is realized by using an invoke for querying
the backend services for the evaluation of the latest business
document exchanged and then a process global variable is
set accordingly. This may lead to a switch to another shared
state within the next iteration of the use case’s while loop.

An ebBP Start element in combination with the first shared
state it links to results in a variable assignment before the
global process loop depicted in listing 2. Thereby, the global
process variable is initialized with the value for the first
shared state and as a result the permissible BTAs of this
shared state are reachable. The translation of an ebBP fi-
nal state Success or Failure results in an invoke statement
to propagate the process state to the backend system and
a subsequent exit command to terminate the process. Fi-
nally, the correlation of messages is described. As Web Ser-
vices operate in stateless mode, messages have to be cor-
related using either WS-Addressing10 or explicit addressing
using BPEL correlations. Explicit correlation is used here
as this option proved to be easier to implement for accessing
backend services and is advantageous in terms of indepen-
dence from the choice of BPEL engine. Clearly, this imposes
the necessity on backend services to take over received cor-
relators to response messages. Note that, nonetheless, many
BPEL engines do support automatic correlation, especially
for BPEL to BPEL communication.

6. PRACTICAL EXPERIENCE
The ebBP to BPEL translator has been written in the

Java language and the main API used for that was the
Streaming API for XML (StAX11). Approximately 14000
method lines of code have been written to implement the
translator. Less code may have been needed using other li-
braries like DOM or other technologies like XSLT. For the
approach presented here, the choice of technology for imple-
menting the translator is of subordinate importance.
The use case of this work (section 3) can be translated in
full and produces fully BPEL compliant process descrip-
tions. The created BPEL processes have been tested using
the Apache ODE 1.2 BPEL engine and the Apache Axis2 1.4
Web Service stack. For the backend services described above
dummy Web Services have been implemented that emulate
business logic by forwarding decisions to the user. Figure 4
shows the Seller role deciding whether to accept an order in
full (Accepted) or to defer its decision (Pending). The use
case from section 3 could not be performed on the selected
platform in full due to an ODE bug in handling whiles

in combination with picks which resulted in the case that
a shared state’s while element can only be entered once.
Thus, though every shared state of the use case could be
reached there were two states that could not be followed-
on with a “normal” termination of the process. Further-
more, WS-ReliableMessaging (using Apache Sandesha212)

10http://www.w3.org/TR/ws-addr-core
11http://jcp.org/en/jsr/detail?id=173
12http://ws.apache.org/sandesha/sandesha2/

Table 2: BPEL production rules for ebBP Request-
ingBusinessActivity

Role BPEL Process Elements
Initiator - enclosing scope

+ - enclosing flow for concurrent processing
Responder of RA/RAE and AA/AAE

RA / RAE
Initiator - enclosing while for trying to get a valid

RA/RAE until ebBP retryCount is exceeded
- scope to encapsulate RA/RAE handling
- catch block for RAE handling
- invoke to check RAE validity using the

backend system
- throw to throw ebBP AnyProtocolFailure

in case no valid RAE was received and
ebBP retryCount is exceeded

- throw to throw ebBP RequestReceiptFailure
in case of a valid RAE

- catchAll block for technical failure (TF)
handling

- rethrow to forward TF to enclosing scope

if ebBP retryCount is exceeded
- onAlarm to implement ebBP

timeToAcknowledgeReceipt
- throw ebBP AnyProtocolFailure if ebBP

retryCount is exceeded
- invoke to forward Business Document

(BD) to and get a RA/RAE from Responder
- invoke to check RA validity using the

backend system
Responder - enclosing scope

- catch block for RAE handling
- reply construct to forward RAE to Initiator
- throw ebBP RequestReceiptFailure in case

of a RAE
- onAlarm to implement ebBP

timeToAcknowledgeReceipt
- invoke to forward BD to and get a

RA/RAE from backend system
- reply to forward RA to Initiator

AA / AAE
Initiator - enclosing while to wait for valid AA/AAE

- scope to encapsulate AA/AAE handling
- catch block to forward ebBP

RequestAcceptanceFailure faults to
enclosing scopes

- catchAll block to handle TF
- empty to wait for an AA/AAE despite of TFs
- onAlarm to implement ebBP

timeToAcknowledgeAcceptance
- pick to receive either AA or AAE
- invoke to check AA/AAE validity using

the backend system
- throw ebBP RequestAcceptanceFailure in

case of a valid AAE
Responder - enclosing scope

- catch block for handling AAE
- invoke to forward AAE to Initiator
- throw ebBP RequestAcceptanceFailure in

case of an AAE
- onAlarm to implement ebBP

timeToAcknowledgeAcceptance
- invoke to get AA/AAE from backend system
- invoke to forward AA to Initiator

http://www.w3.org/TR/ws-addr-core
http://jcp.org/en/jsr/detail?id=173
http://ws.apache.org/sandesha/sandesha2/

Table 3: BPEL production rules for ebBP Decision
Role BPEL Process Elements

Initiator - invoke to send BD of RespondingBA to
+ backend system in order to get an

evaluation
Responder - if no RespondingBA exists, BD of

RequestingBA is used
- if and assign statements to determine

and switch to next process state

Note that ConditionGuardValues are
evaluated before DocumentEnvelopes.

Figure 4: Seller deciding upon quote request

and WS-Security (using Apache Rampart13) have been con-
sidered for implementing QoS features. Though it was pos-
sible to offer BPEL processes as secure and reliable Web Ser-
vices, invoking other Web Services from BPEL processes in a
reliable and secure manner was not possible. So the applica-
tion of these standards has been canceled. Some other QoS
features can be implemented by offering utility services. For
example, such utility services could be used to implement
non-repudiation by signing and storing business documents.
These utility services could then be called from the control
processes and these additional calls can quite easily be inte-
grated into the translation engine as has been tested for a
dummy non-repudiation service.

7. RELATED WORK
In general, this work is about implementing B2Bi using

interacting partner processes. In so far, the work of stan-
dardization institutions that specify how to perform Busi-
nessTransactions or similar concepts at runtime is related
to our work. For example, the so-called RosettaNet Imple-
mentation Framework specifies rules which define how to
perform PIPs. These standards, however, typically do not
offer the generation of executable implementations of con-
trol processes as we do with our translator.
In the area of workflow research, the issue of using part-
ner local processes for realizing B2Bi has been investigated.
Issues like the conformance of local processes to global pro-
cess descriptions have been analyzed, among others, in [18]
from a conceptual point of view. The research problems in-
vestigated in that area are very much the same as in more
recent contributions that explicitly analyze the dichotomy
between choreography and orchestration, e.g., [21] propose
Let’s Dance as a language for modeling both, choreographies
and orchestrations. These more conceptual approaches dif-
fer from our work in not using dedicated B2Bi standards like
ebBP and BPEL and in frequently only covering the func-

13http://ws.apache.org/rampart/

tionality of these standards partly, most notably message
and control flow.
Several more technology driven approaches like [14] and [5]
derive BPEL from micro-choreography compositions but do
not offer a B2Bi standards based choreography model for
the composition of micro-choreographies.
One goal of our work is to provide compatibility of inter-
acting BPEL processes by deriving BPEL processes from
common ebBP choreographies. While this is a constructive
approach, the problem may be tackled in an analytical way
as well, e.g., [9] analyze compatibility by means of defining
a BPEL semantics in terms of Petri nets. Related to this
are approaches like [20] and [1] that focus on analyzing con-
formance of orchestration models to choreography models
in an analytical way. Note that more general findings from
workflow research in general (cf. [18]) apply as well.
There are several contributions that translate dedicated B2Bi
or Web service choreography languages to BPEL as we do.
[7] also propose the translation of ebXML BPSS to BPEL.
Apart from being designed for BPSS 1.1, [7] is different from
our work in not applying a shared state based modeling ap-
proach to ebBP and in not reporting on a fully working
translator.
An interesting approach is presented in [3] that proposes
an UML profile for modeling the orchestration of multi-
ple UMM BusinessTransactions of one integration partner.
Such a model can then be transformed to BPEL processes.
This differs from the work at hand in actually transforming
a UML orchestration into a BPEL orchestration, but not
that the UML orchestration is derived from one (or more)
UMM choreographies which represents an extra step in de-
riving BPEL processes from choreographies that can be used
for adding more partner-specific logic. Interestingly, [3] also
captures collaboration state for routing the choreography
but incorporates it in the model by using transition guards.
Last, [3] assumes UMM and consequently UML for modeling
choreographies whereas we only expect the textual format
ebBP which may be more accessible.
Finally, there are several proposals for mapping WS-CDL
choreographies to BPEL, e.g., [10] and [19]. These approaches
differ from ours in using WS-CDL instead of ebBP. While
WS-CDL may be a good choice for many choreographies due
to its tight relationship with WSDL as opposed to ebBP, we
claim that ebBP is particularly useful for B2Bi due to its
better support for specifying QoS features.

8. CONCLUSION AND FUTURE WORK
The main goal of this paper, i.e., showing that shared state

based ebBP models can be created in a standard compliant
manner and subsequently translated into BPEL orchestra-
tions has been achieved by describing a suitable modeling
concept and by implementing a prototypic ebBP to BPEL
translator. Shared states support the agreement function of
choreography models and allow for the definition of state
specific timeouts. They are beneficial for creating choreog-
raphy as well as orchestration models by offering natural
synchronization points and, finally, define the basis for sig-
naling the collaboration’s progress to process stakeholders.
Apart from introducing shared states into ebBP to BPEL
translations, an integration architecture for using the gen-
erated BPEL processes has been proposed which does not
require BPEL processes to be edited after generation. Com-
paring the size of the use case to the NES standard processes

http://ws.apache.org/rampart/

it can further be stated that even collaborations of real-
world size can be processed. Tests using the BPEL engine
Apache ODE showed that the generated BPEL processes
can be executed to a large extent. Though BPEL engines
and Web Service standards addressing QoS features have not
yet reached their full potential, tests are promising that the
approach proposed may be applicable for real world B2Bis
in the future.
Nonetheless, there are limitations to the approach presented.
Apart from multi-party integrations and hierarchical decom-
position for more complex models, support for QoS features
like reliability or security is a key issue for the approach
to be really useful in the B2Bi area. Furthermore, a pro-
cess model for applying the approach within B2Bi projects
should be defined, in particular when it comes to handling
changes in the choreography. Focusing on the ebBP model
an extension to the standard is envisaged that allows for
a smoother integration of shared states, but we decided to
check its expressibility in terms of regular ebBP constructs
first. Currently, the Fork-Join work-around and the imple-
mentation of corresponding Joins assume a 1-to-1 relation
between Forks and corresponding Joins. It also leads to
some inelegant, yet standard compliant, constructs such as
Joins referencing the same BTA in its FromLinks.
As the practical findings of this work are encouraging the use
of ebBP to BPEL translations more formal analysis and val-
idation features should be applied. In particular, the sound-
ness of ebBP input models, the conformance of BPEL or-
chestrations to ebBP choreographies and the compatibility
between interacting BPEL processes are to be investigated.
As ebBP and BPEL both do not have formal semantics the
development/selection of suitable semantics is the next step
of our work.

9. REFERENCES
[1] M. Baldoni, C. Baroglio, A. Martelli, V. Patti, and

C. Schifanella. Verifying the conformance of web
services to global interaction protocols: A first step. In
EPEW/WS-FM, ser. Lecture Notes in Computer
Science, pages 257–271, 2005.

[2] A. Barros, M. Dumas, and A. H. M. T. Hofstede.
Service interaction patterns. In Proceedings of the 3rd
International Conference on Business Process
Management (BPM), Nancy, France, pages 302–318.
Springer Verlag, 2005.

[3] B. Hofreiter and C. Huemer. A Model-driven
Top-down Approach to Inter-organizational Systems:
From Global Choreography Models to Executable
BPEL. In Joint Conf. CEC’08 and EEE’08,
Washington D.C., USA, July 2008. IEEE.

[4] J. T. Mentzer et al. Defining Supply Chain
Management. JOURNAL OF BUSINESS
LOGISTICS, 22(2):1–26, 2001.

[5] R. Khalaf. From RosettaNet PIPs to BPEL processes:
A three level approach for business protocols. Data
Knowlegde Engineering, 61(1):23–38, 2007.

[6] B. Kiepuszewski, A. H. Hofstede, and C. J. Bussler.
On structured workflow modelling. Lecture Notes in
Computer Science, 1789:431–445, 2000.

[7] J.-H. Kim and C. Huemer. From an ebXML BPSS
choreography to a BPEL-based implementation.
SIGecom Exch., 5(2):1–11, 2004.

[8] D. M. Lambert and M. C. Cooper. Issues in Supply
Chain Management. Industrial Marketing
Management, 29(1):65 – 83, 2000.

[9] N. Lohmann, P. Massuthe, C. Stahl, and D. Weinberg.
Analyzing interacting ws-bpel processes using flexible
model generation. Data Knowl. Eng., 64(1):38–54,
2008.

[10] J. Mendling and M. Hafner. From WS-CDL
choreography to BPEL process orchestration.
Enterprise Information Management (JEIM). Special
Issue on MIOS Best Papers, 2006.

[11] OASIS Open. Web services business process execution
language (wsbpel).

[12] OASIS Open. ebXML Business Process Specification
Schema Technical Specification. OASIS Open, 2.0.4
edition, December 2006.

[13] OASIS Open. Web Services Business Process
Execution Language, 2.0 edition, April 2007.

[14] A. Schönberger and G. Wirtz. Realising RosettaNet
PIP Compositions as Web Service Orchestrations - A
Case Study. In The 2006 Int. Conf. on e-Learning,
e-Business, Enterprise Information Systems,
e-Government, & Outsourcing (CSREA EEE’06),
June 2006.

[15] A. Schönberger and G. Wirtz. Using Webservice
Choreography and Orchestration Perspectives to
Model and Evaluate B2B Interactions. In The 2006
Int. Conf. on Software Engineering Research and
Practice (SERP’06), June 2006.

[16] A. Schönberger and G. Wirtz. Taxonomy on
Consistency Requirements in the Business Process
Integration Context. In 2008 Conf. on Software
Engineering and Knowledge Engineering
(SEKE’2008), Redwood City, USA, July 2008.

[17] C. Schroth, T. Janner, and V. Hoyer. Strategies for
cross-organizational service composition. In
MCETECH ’08: Proceedings of the 2008 International
MCETECH Conference on e-Technologies, pages
93–103, Washington, DC, USA, 2008. IEEE Computer
Society.

[18] W. M. P. van der Aalst and M. Weske. The p2p
approach to interorganizational workflows. In CAiSE
’01: Proceedings of the 13th International Conference
on Advanced Information Systems Engineering, pages
140–156, London, UK, 2001. Springer-Verlag.

[19] I. Weber, J. Haller, and J. A. Mülle. Automated
derivation of executable business processes from
choreograpies in virtual organizations. In Proceedings
of Multikonferenz Wirtschaftsinformatik 2006 (MKWI
2006), Mar. 2006.

[20] W. L. Yeung. A formal basis for cross-checking ebxml
bpss choreography and web service orchestration. In
APSCC ’08: Proceedings of the 2008 IEEE
Asia-Pacific Services Computing Conference, pages
524–529, Washington, DC, USA, 2008. IEEE
Computer Society.

[21] J. M. Zaha, A. P. Barros, M. Dumas, and A. H. M. ter
Hofstede. Let’s dance: A language for service behavior
modeling. In Proceedings of the 14th international
conference on cooperative information systems
(CoopIS’06), pages 145–162, Montpellier, France, 10
2006.

	1 Introduction
	2 ebBP Model
	2.1 Modeling micro-choreographies
	2.2 Modeling shared states and timeouts
	2.3 Composing micro-choreographies and shared states

	3 Use Case
	4 Integration Architecture
	4.1 Message Flow
	4.2 BPEL and WSDL Artifacts

	5 ebBP to BPEL Translation
	6 Practical Experience
	7 Related Work
	8 Conclusion and Future Work
	9 References

