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ABSTRACT: 
 
Recently, the Web Services Interoperability Organization (WS-I) has announced to have 
completed its interoperability standards work. The latest deliverables include the so-called “Basic 
Security Profile” and the “Reliable Secure Profile”. This gives rise to the question whether or not 
Web Services adopters can rely on interoperability and functionality of Web Services stacks, in 
particular in terms of security and reliability features. To answer this question, we thoroughly 
analyze two important Web Services stacks for interoperability of WS-Security and WS-
ReliableMessaging features. Our analysis shows that security and reliability features are far from 
being implemented in an interoperable manner. Additionally, we reveal that some of those 
interoperability problems are not even covered by WS-I profiles and therefore conclude that 
WS-I’s work has not yet resulted in Web Services interoperability. Finally, we investigate support 
for the so-called “Secure WS-ReliableMessaging Scenario” in order to find out whether WS-* 
adopters can at least rely on the availability of real-world functionality in homogeneous 
environments. 
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INTRODUCTION 
 
Quality-of-Service (QoS) features such as security and reliability are brought to the Web Services 
world by the so-called WS-* standards. WS-Security 1.1 (WS-Sec, OASIS 2006) and WS-
ReliableMessaging 1.2 (WS-RM, OASIS 2009a) are prominent representatives of WS-* 
standards that define data formats and processing instructions for extending the SOAP (W3C 
2007) messages that implement Web Services exchanges. For example, an XML Signature 
tag together with SignedInfo, SignatureValue and KeyInfo tags would have to be 
inserted into the SOAP Header tag to provide integrity protection. For convenience, a Web 
Services developer is not supposed to ‘manually’ insert all that information into SOAP messages. 
Instead, Web Services Security Policy 1.3 (WS-Sec-Pol, OASIS 2009b) and Web Services 
Reliable Messaging Policy Assertion 1.2 (WS-RM-Pol, OASIS 2009c) can be used to extend the 
WSDL definition of a Web service with assertions that instruct the Web Services stack 
implementations (WS stack in the following) in use to apply WS-Sec and WS-RM features to the 
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SOAP message exchanges. This policy-based realization of QoS features for Web Services has 
been postulated in several publications (Martino and Bertino 2009; Gruschka, Luttenberger et al. 
2006; Gruschka, Jensen et al. 2007; Curbera, Khalaf et al. 2008; Khalaf, Keller et al. 2006; 
Nezhad, Benatallah et al. 2006; Menzel, Warschofsky et al. 2010a) and promises better 
interoperability than letting all Web Services developers implement QoS features their own way. 
 
On November 10th 2010, the Web Services Interoperability Organization (WS-I) released a press 
announcement with the following title: 
 

“WS-I Completes Web Services Interoperability Standards Work 
Industry Collaboration Enables Interoperability in the Cloud”1 

 
This announcement followed the release of new versions of WS-I’s core deliverables, most 
notably the Basic Security Profile (BSP, WS-I 2010a) and Reliable Secure Profile (RSP, WS-I 
2010b) in 2010. WS-I profiles are the core deliverables of WS-I and document “[..] clarifications, 
refinements, interpretations and amplifications of those specifications which promote 
interoperability” (WS-I 2010b). The main target of BSP and RSP are WS-Sec and WS-RM. As 
WS-I promotes interoperability and has declared its standardization work to be completed, this 
means that Web Services adopters should be able to rely on the interoperable implementation of 
Web Services security and reliability features which are pivotal for Web Services according to 
(Nezhad, Benatallah et al. 2006; Moser, Melliar-Smith et al. 2007). However, WS-Sec and WS-
RM as well as WS-Sec-Pol and WS-RM-Pol are highly complex specifications so that 
interoperability across WS stacks does not come easy. Consistently, (Martino and Bertino 2009) 
stress that “although one of the main purposes of the standard [i.e., a WS security standard] is to 
guarantee the interoperability between different platforms, it might be necessary to test it on the 
field.” 
 
This paper investigates in how far WS-I’s work has led to interoperability across WS stacks 
regarding the implementation of WS-Sec(-Pol) and WS-RM(-Pol) and whether real-world 
functionality is available. In order to operationalize the question whether or not a Web Services 
adopter can rely on interoperability between different WS stacks, we use two ‘optimistic’ 
hypotheses: 
 

H1: The overwhelming majority of WS-Sec-Pol/WS-RM-Pol features are implemented by 
Web Services stacks. 

H2: Out of those WS-Sec-Pol/WS-RM-Pol features implemented by two platforms, the 
overwhelming majority is implemented in an interoperable manner. 

 
For analyzing availability of real-world functionality, support of the so-called Secure WS-
ReliableMessaging Scenario (SecRM scenario, Gavrylyuk, Hrebicek et al. 2005; Backes, 
Mödersheim et al. 2006) is investigated. The SecRM scenario describes the WS-Sec and WS-RM 
based implementation of important security and reliability properties that have been identified as 
crucial for integration scenarios (Schönberger, Wirtz et al. 2010) and therefore provides a good 
benchmark for real-world functionality. In anticipation of the interoperability results of section 
INTEROPERABILITY ASSESSMENT, the SecRM scenario is tested in homogeneous 
environments only. 
 
This paper is an extended version of (Schönberger, Schwalb et al. 2011) and the main new 
content is the analysis of the SecRM scenario presented in section FUNCTIONALITY 
                                                 
1 http://ws-i.org/docs/press/pr_101110.pdf, 08/30/2011 
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ASSESSMENT. The contribution described in this paper is fourfold where the first three 
contributions originally have been published in (Schönberger, Schwalb et al. 2011). First, we 
assess the coverage of WS-Sec-Pol/WS-RM-Pol specifications by two major Java-based 
WS stacks. Second, we assess the interoperability of implemented features. Based on these results, 
both hypotheses (H1, H2) will have to be rejected. Third, we analyze in how far the detected 
interoperability issues could have been avoided by strict compliance to the BSP and RSP. Fourth, 
we present a WS-Policy operationalization of the SecRM scenario and we show that this 
advanced real-world WS-* functionality is available at least for one platform. 
 
In section TEST APPROACH, the notion of interoperability is operationalized for the work at 
hand and the approach towards interoperability testing WS-* standards is described. Section 
INTEROPERABILITY ASSESSMENT presents the results of our interoperability and coverage 
investigation while section WS-I TO THE RESCUE? analyzes in how far strict compliance to 
WS-I’s BSP/RSP could have been of help. In section FUNCTIONALITY ASSESSMENT, the 
definition of the SecRM scenario is introduced, a WS-Policy definition for implementing it is 
given and the test results for SecRM support are presented. Section RELATED WORK discusses 
related work and section CONCLUSION AND FUTURE WORK concludes and points out 
directions for future work. 
 
TEST APPROACH 
 
In order to provide a sound foundation for this work, we sketch our approach for testing WS-* 
interoperability (Schwalb, Schönberger et al. 2010; Schwalb and Schönberger 2010) by 
operationalizing the notion of interoperability, describing a concept for executing test cases and 
outlining the systematic derivation of test cases. 
 
(Wegner 1996) defines ‘interoperability’ as the “the ability of two or more software components 
to cooperate despite differences in language, interface, and execution platform.” While this 
definition is good enough for an abstract characterization of interoperability in arbitrary systems, 
it has to be refined for the purpose of WS-* interoperability testing. Remember that we require 
the use of WS-Policy for asserting QoS properties of Web Services interactions. Hence, the 
following sources of interoperability issues between two WS stacks have to be considered. First, 
one of the WS stacks under test may not know/refuse a particular WS-Policy assertion that 
specifies a particular communication feature. Second, one of the WS stacks may accept a WS-
Policy assertion, but ignore it. Third, a WS stack may deviate from one or more of the processing 
instructions that are specified by a WS-* standard for the implementation of a particular WS-
Policy assertion. Considering these sources of interoperability issues and taking into account that 
a Web service interaction typically takes place between a client role and a server role, 12 
interoperability levels can be identified that range from a policy being refused/ignored by one of 
the roles over abrupt termination of communication to full protocol success (for details, please 
see Schwalb, Schönberger et al. 2010). So, for the purpose of this work, interoperability is 
defined as follows: 
 
Definition 1 (Interoperability): 
Two WS stacks are interoperable with respect to a WS-* policy assertion if client and server 
process the assertion such that the exchange of corresponding SOAP messages succeeds without 
errors and such that WS-* processing rules are applied. 
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For determining interoperability as defined above, the approach visualized in Figure 1 is applied. 
WS-Sec-Pol/WS-RM-Pol definitions are used to specify concrete test cases. For each test case, 
the WSDL of a sample Web service is extended with such a definition to be used by the 
WS stacks of the Web service client and provider for determining the number, sequence and 
contents of the SOAP messages to be exchanged (upper part of Figure 1). The test case is then 
performed for four different WS stack configurations. Assume that two WS stacks A and B are to 
be tested for interoperability and that a configuration ‘X-Y’ expresses that WS stack X takes the 
client role and WS stack Y takes the server role. Then, the test case is first performed in 
homogeneous environments (A-A, B-B) for checking whether or not the functionality is 
implemented and afterwards in heterogeneous environments (A-B, B-A) for checking 
interoperability. Note that if only one of the homogeneous environments does not work, then the 
heterogeneous environments still are worth testing. Our practical tests show (cf. Schwalb and 
Schönberger 2010) that some features do not work in a homogeneous environment (A-A or B-B), 
but in a heterogeneous one (B-A or A-B). 
 

 
Figure 1: Setup of Test Environment 

 
The interoperability levels are to be examined for each test case and WS stack configuration. 
Some of the interoperability levels can be verified without investigating the SOAP messages 
exchanged, e.g., refusal of the policy by the server. The analysis and determination of other 
interoperability levels require the use of network analysis tools like Wireshark2  that enable 
capturing the SOAP messages exchanged (lower part of Figure 1). However, we do not check the 
strict conformance of SOAP messages to WS-* standards in our interoperability testing approach. 
Instead, SOAP messages are only analyzed for the existence of WS-* headers as well as for 
unexpected errors and premature termination. Not checking conformance allows for the 
possibility of ‘interoperable’ communication that violates WS-* standards. Consistently, 
definition 1 deliberately does not require that WS-* processing rules are applied correctly. From 
our experience, this is a purely theoretical limitation for heterogeneous environments. 
 

                                                 
2 www.wireshark.org, 08/30/2011 
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For deriving the configuration options for a single policy assertion, we propose to make use of the 
assertion structure definitions that are published in the WS-Policy extension standards. Listing 1 
shows the structure definition of the WS-RM-Pol standard’s RMAssertion assertion (note that 
usual regular expression operators are used to define structural constraints on the assertion). This 
assertion basically says that delivery semantics options ExactlyOnce, AtLeastOnce and 
AtMostOnce of WS-RM must be combined with either InOrder delivery or not. Checking 
these features in isolation frequently is not possible because a deployable WS-Policy 
configuration may require additional assertions, e.g., testing a WS-Sec-Pol protection assertion 
requires declaring assertions for a valid security binding (options for so-called Asymmetric-
/Symmetric-/TransportBindings). To solve this issue, we propose to start with sample 
policy configurations that ship with WS stacks or are retrievable from the web and then to 
permute the options of the assertion under test only. By using the WS-Policy structure definitions 
and sample policy configurations as proposed, it is possible to identify test cases that test a WS-* 
feature almost in isolation and to achieve reasonable coverage of the WS-Policy standards. Based 
on the results of these “isolated” test cases, “combined” test cases that cover the interplay of 
several WS-* features can be derived. 
 

Listing 1. Structure Definition of RMAssertion (cf. OASIS 2009c) 
1 <wsrmp:RMAssertion (wsp:Optional="true")? 
 ...> 
2 <wsp:Policy> 
3  (<wsrmp:SequenceSTR/> | 
4   <wsrmp:SequenceTransportSecurity/> ) ? 
5 
6   <wsrmp:DeliveryAssurance> 
7    <wsp:Policy> 
8     (<wsrmp:ExactlyOnce/> | 
9     <wsrmp:AtLeastOnce/> | 
10     <wsrmp:AtMostOnce/> ) 
11     <wsrmp:InOrder/> ? 
12    </wsp:Policy> 
13   </wsrmp:DeliveryAssurance> ? 
14  </wsp:Policy> 
15  ... 
16 </wsrmp:RMAssertion> 
 

 
INTEROPERABILITY ASSESSMENT 
 
For evaluating WS-Sec-(Pol)/WS-RM-(Pol), we have chosen two of the most reputable JAVA-
based WS stacks, namely Oracle’s (Sun’s) Metro WS-stack that comes with the GlassFish 
Application Server3 and Apache’s Axis2 WS stack as reused in IBM’s WebSphere Application 
Server4. Below, we show that considerable interoperability problems between these WS stacks 
exist which justify rejecting both hypotheses H1 and H2. 
 

                                                 
3 http://glassfish.dev.java.net, 08/30/2011 
4 http://www-01.ibm.com/software/webservers/appserv/was/, 08/30/2011 
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The following groups of isolated test cases have been identified for WS-Sec-(Pol) and 
WS-RM-(Pol). In anticipation of the results, combined test cases are left out: 
 

1) WS-RM-Pol Assertions 
This test group essentially comprises the test cases derivable from listing 1 and cover the 
delivery semantics of reliable messaging. 

2) WS-Sec-Pol Protection Assertions 
This test group covers the various ways of asserting the need for signing or encrypting 
SOAP messages or parts of SOAP messages. 

3) WS-Sec-Pol Tokens 
This test group covers assertions for configuring how security tokens are processed, e.g., 
whether or not tokens have to be included in every SOAP message, and the assertions for 
declaring the various token types themselves such as UsernameTokens or 
X509Tokens. 

4) WS-Sec-Pol Security Bindings 
Security binding assertions configure the algorithms to be used for signing/encrypting as 
well as options for configuring the basic security mechanisms transport level security, 
symmetric key security as well as asymmetric key security. 

5) WS-Sec-Pol Supporting Tokens 
This test group covers assertions that are used to augment the claims provided by the 
token of the basic Security Binding. For example, an EndorsingSupporting 
Tokens assertion may be used to require a signature of the signature of a SOAP 
message (cf. OASIS 2009b, section 8.3). 

6) WS-Sec-Pol WS-Sec and WS-Trust Options 
This test group covers general WS-Sec and WS-Trust assertions such as what kind of 
token references must be supported, whether client or server challenges must be 
supported, or whether client or server entropy is required. 

 
All in all, the number of test cases derived amounted to 169. This number proved to still be 
manageable. For the majority of test cases, it was possible to retrieve executable sample 
configurations for at least one of the WS stacks from the web. Executable sample configurations 
for the remaining test cases then could be derived by just replacing or reconfiguring an assertion, 
e.g., using a ‘WssX509V3Token11’ instead of a ‘WssX509V3Token10’. 109 of the test cases 
could successfully be performed in at least one of the homogeneous environments. This fact taken 
together with the exception messages of the WS stacks under test about not supporting particular 
features indicates that our policy configurations in itself were correct (in the sense of complying 
to WS-Sec-Pol/WS-RM-Pol) for most test cases and therefore not the source of the detected 
interoperability problems. In the following, section Core Interoperability Issues describes the 
core issues detected and section Overall Results summarizes the interoperability results per 
group of test cases. 
 
Core Interoperability Issues 
 
In order to protect solution provider interests we have made the following interoperability issues 
anonymous (more detailed test results are available as a technical report in Schwalb and 
Schönberger 2010) and stick to the A,B-notation of section TEST APPROACH: 
 

1) No WS-ReliableMessaging Policy Support 
Platform A uses a proprietary API for configuring reliable messaging features that is 
accessible via a GUI and does not accept WS-RM-Pol for configuration. So, if platform 
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A is used for the client, then no interaction is possible. However, if platform A is used for 
the server then platform B can be configured using WS-RM-Pol such that interaction is 
possible for some test cases. 

2) No TransportBinding Support 
Platform A does not support the TransportBinding assertion as defined in WS-Sec-
Pol (OASIS 2009b, section 7.3). This assertion allows for configuring the use of transport 
protocol features for securing messages, in particular using HTTPS. Note that this does 
not mean that platform A does not support HTTPS at all, it just means that the 
TransportBinding assertion cannot be used. 

3) No XPath Support for Element Identification 
The EncryptedElements assertion (OASIS 2009b, section 4.2.2) and the 
SignedElements assertion (OASIS 2009b, section 4.1.2) of WS-Sec-Pol define an 
XML tag named XPath for specifying the elements of a SOAP message to be 
encrypted/signed. However, platform B does not support this tag. 

4) No OnlySignEntireHeadersAndBody Support 
This optional WS-Sec-Pol element (OASIS 2009b, section 7.4, 7.5) enforces that “[..] 
digests over the SOAP body and SOAP headers MUST only cover the entire body and 
entire header elements” (OASIS 2009b, section 6.6). Although the WS-Sec-Pol standard 
explicitly recommends to use this element in order to “[..] combat certain XML 
substitution attacks” (OASIS 2009b, section 12), platform A does not support it. 

5) No EncryptBeforeSigning Support 
This optional WS-Sec-Pol element (OASIS 2009b, section 7.4, 7.5) can be used to 
override the default value SignBeforeEncrypting of the protection order property 
(OASIS 2009b, section 6.3). However, only platform B supports this element. 

6) Deviating Processing of UsernameToken 
The WS-Sec-Pol UsernameToken assertion can be used to leverage 
username/password authentication for interactions and version 1.0 of the so-called 
UsernameToken profile (OASIS 2004) is accepted by both platforms. However, platform 
A leaves the Username and Password elements empty whereas platform B by default 
encrypts the whole UsernameToken. Platform A essentially does not allow for 
configuring UsernameTokens using WS-Sec-Pol whereas platform B disregards the 
following WS-Sec-Pol recommendation by applying encryption by default: “When the 
UsernameToken is to be encrypted it SHOULD be listed as a 
SignedEncryptedSupportingToken (Section 8.5), EndorsingEncryptedSupportingToken 
(Section 8.6) or SignedEndorsingEncryptedSupportingToken (Section 8.7)” (OASIS 
2009b, section 5.4.1). 

7) Deviating Signing Strategy for Timestamp 
The optional WS-Sec-Pol IncludeTimestamp element (OASIS 2009b, section 7.3, 
7.4, 7.5) can be used to require the inclusion of a Timestamp element in the SOAP 
headers of an interaction and is supported by both platforms. Additionally, WS-Sec-Pol 
requires that if IncludeTimestamp is specified and if there is no transport layer 
encryption specified then the Timestamp has to be integrity protected at the message 
level, i.e., signed (OASIS 2009b, section 6.2). However, platform A does not directly 
implement this rule but requires the Web Services developer to add an according 
SignedElements/XPath expression to sign the timestamp. 

8) Ignored IncludeToken Values 
The optional attribute IncludeToken allows for specifying in which SOAP messages 
of an interaction a corresponding token, e.g., a UsernameToken, should be present. 
For example, the IncludeToken value AlwaysToRecipient specifies that a token 
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should be present in all messages from the initiator of the interaction to the recipient, but 
not vice versa. Alternative values are Never, Once, AlwaysToInitiator and 
Always (OASIS 2009b, section 5.1.1). Both platforms under test accept all 
IncludeToken values, but platform A simply ignores the actual value and always 
includes the corresponding token in the SOAP messages. This leads to an interoperability 
error with platform B in case Never is configured even in the A-B configuration because 
platform B rejects SOAP messages that carry a token if Never is specified. 
Inconsistently, platform B does not stop communication if SOAP messages carry a token 
that is not permitted due to the AlwaysToRecipient/AlwaysToInitiator values. 

9) Deviating Processing of SignedParts/Body 
The WS-Sec-Pol SignedParts assertion (OASIS 2009b, section 4.1.1) can be used to 
specify the integrity protection of a SOAP message’s Header, Body or Attachment 
parts. Both platforms under test support the optional element Body which requires that 
“[..] the soap:Body element, its attributes and content, of the message needs to be 
integrity protected” (OASIS 2009b, section 4.1.1). However, platform B signs the first 
element of the SOAP message Body whereas platform A signs the Body element itself. 

10) Deviating EncryptedParts Implementation 
Both platforms support this WS-Sec-Pol assertion (OASIS 2009b, section 4.2.1) that can 
be used to specify the encryption of a SOAP message’s Header, Body or 
Attachment parts. However, platform B only supports the use of EncrpytedParts 
for the IncludeToken value Never. So, if platform B is used as a server, an 
interoperability issue arises because platform A always (cf. issue 8) includes a token 
which is rejected by the first platform. 

 
Overall Results 
 
Due to space limitations, we only present the most interesting figures of the interoperability tests. 
The interoperability levels detected for all test cases are available as a technical report (Schwalb 
and Schönberger 2010). In Table 1, the column headers provide the following information: 
 

a) # counts the number of test cases per test group 
b) A-A (B-B) counts the number of test cases per test group for which full interoperability 

could be detected with platform A (B) as both, client and server. 
c) A-A ∧ B-B counts the number of test cases per test group for which full interoperability 

could be detected for both homogeneous environments. 
d) A-A ∨ B-B counts the number of test cases per test group for which full interoperability 

could be detected for at least one of the homogeneous environments. 
e) A-B ∨ B-A counts the number of test cases per test group for which full interoperability 

could be detected for at least one of the heterogeneous environments. 
f) A-B ∧ B-A counts the number of test cases per test group for which full interoperability 

could be detected for both homogeneous environments.  
g) (A-A ∧ B-B) ∧ ¬(A-B ∧ B-A) counts the number of test cases per test group for which 

full interoperability could be detected for both homogeneous environments, but where an 
interoperability problem was detected for at least one of the heterogeneous environments. 

 
In turn, the row headers simple distinguish the different test groups. The overall figures reveal 
that platform A implements only 30.2% (51 test cases) and platform B only 58.6% (99 test cases) 
of the WS-Sec-Pol/WS-RM-Pol functionality. Based on this data, hypothesis H1 must be rejected. 
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Luckily, the functionalities implemented by the two platforms largely overlap which can be 
inferred by observing that (A-A ∧ B-B) is close to Min(A-A,B-B) for all test groups. Therefore, 
there are at least 41 test cases that could be performed successfully on both homogeneous 
platforms which allows for testing hypothesis H2. Out of those 41 test cases there were 13 
(31.7%) test cases that could not be performed successfully in both heterogeneous environments. 
Considering the complexity of WS-RM-Pol and especially WS-Sec-Pol this number does not 
seem to be too high, but for practical purposes an error rate of about one third is not acceptable 
and therefore H2 must be rejected as well. 
 

Table 1: Interoperability Results per Test Group 

 
 
Taking the effects of low coverage and bad interoperability together results in very low WS-Sec-
Pol/WS-RM-Pol functionality that is supported in an interoperable manner. Only 47 (27.8%) out 
of 169 test cases can be performed successfully in at least one of the heterogeneous environments 
and only 28 (16.6%) test cases for both heterogeneous environments. This means that 
implementing security and reliability for Web Services based on WS-RM-Pol and WS-Sec-Pol 
for the heterogeneous platform configurations investigated here is at least a challenge. In 
particular, it is not possible to exchange a SOAP message between the two platforms that is both, 
confidentiality and integrity protected. Platform B does not support XPath for identifying the 
elements to be encrypted. Instead, it relies on using the EncryptedParts assertion and 
assumes an InlcudeToken value of Never for using X509 tokens (which is the only basic 
token type supported for the heterogeneous environments). Platform A ignores any 
IncludeToken value an always inserts the token into the SOAP messages which is then 
rejected by platform B. Additionally, platform A does not support the TransportBinding 
assertion so that SSL encryption cannot be asserted either. In consequence, deriving combined 
test cases from isolated test cases (cf. section TEST APPROACH) essentially is senseless. 
 
At least, there is an integrity and confidentiality protected interaction that comes close to WS-
Sec-Pol/WS-RM-Pol based QoS implementation. For confidentiality protection, SSL is used 
which is configured for platform B using a standard TransportBinding assertion and for 
platform A using proprietary configuration. For integrity protection, an AsymmetricBinding 
together with an X509Token is specified and the elements to be signed are identified using the 
SignedParts assertion. However, apart from not being fully standards based, only using 
platform A as server and platform B as client can be performed successfully because the other 
way round a platform A client tries to retrieve proprietary configuration information in vain. 
 
 

 
WS-I TO THE RESCUE? 
 
The two main deliverables of the WS-I that cover the application of WS-Sec and WS-RM are the 
BSP and the RSP (cf. section INTRODUCTION). Those profiles are complemented by test tools 
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and sample applications, but the profiles are authoritative. In the standard document itself, the 
purpose of the BSP is described as follows: 
 
“This document defines the WS-I Basic Security Profile 1.1, based on a set of non-proprietary 
Web services specifications, along with clarifications and amendments to those specifications 
which promote interoperability.” (WS-I 2010a) 
 
Those clarifications and amendments become manifest in so-called requirements together with 
some explaining text and, in case of the RSP, test expressions for evaluating SOAP messages. In 
(Barbir, Hobbs et al. 2007), one of the BSP editors explains that by using the requirements “the 
BSP limits the set of common functionality that vendors must implement and thus enhances the 
chances for interoperability. This in return reduces the complexities for the testing of Web 
Services security.” Moreover, she explains that “the security consideration statements provide 
guidance that is not strictly interoperability related but are testable best practices for security.” 
 
For example, requirement R2001 of the BSP says that “A SENDER MUST NOT use SSL 2.0 as 
the underlying protocol for HTTP/S.”. The explanatory text justifies the requirement by pointing 
out that “SSL 2.0 has known security issues and all current implementations of HTTP/S support 
more recent protocols”. 
 
A common characteristic of those requirements is that they define constraints on the level of 
SOAP messages, i.e., the existence, order and content of XML elements within SOAP messages 
or the actual exchange of SOAP messages is described. Consequently, the WS-I testing tools take 
SOAP messages as input and check them for compliance to the BSP and RSP requirements. From 
the perspective of facilitating interoperability, this amounts to replacing actual interoperability 
testing as described in section TEST APPROACH by checking standard compliance of SOAP 
messages. However, checking standard compliance itself is subject to errors and therefore merely 
an add-on to true interoperability testing but not a replacement. Even worse, the relation between 
WS-Sec-Pol/WS-RM-Pol assertions and the corresponding SOAP messages exchanged is not 
described in BSP and RSP at all. In section 5.1.1, the BSP explicitly allows for out of band 
agreement for specifying the use of WS-Sec. Moreover, it states in several sections (9, 10, 13.1) 
that “[..]no security policy description language or negotiation mechanism is in scope for the 
Basic Security Profile[..]”. The RSP recommends (though not requires) the use of WS-RM-Pol 
for configuring the use of WS-RM in its section 2.4, but it does not define the relation between 
WS-RM-Pol assertions and SOAP messages either. 
 
In so far, the interoperability issues 2, 3, 4, 6, 7, 8 and 10 of section Core Interoperability 
Issues are not covered by the BSP/RSP at all. For issue 1 (no WS-RM-Pol support), platform A 
can be considered to ignore a WS-I recommendation. But as the RSP does not explicitly require 
the use of WS-RM-Pol, platform A nonetheless cannot be said to violate the RSP. For issue 5 (no 
EncryptBeforeSigning support), the BSP explicitly states in its section 6.1 (‘Processing 
Order’), that both, encryption before signing as well as signing before encryption, may be 
appropriate depending on the application scenario. In so far, both protection orders must be 
supported by a WS-I compliant stack. However, that actually has got nothing to do with 
supporting the WS-Sec-Pol EncryptBeforeSigning assertion. As the BSP explicitly allows 
for out of band agreement for specifying the use of WS-Sec, not supporting 
EncryptBeforeSigning can be considered to be WS-I compliant. Finally, for issue 9 
(deviating Processing of SignedParts/Body), the BSP states in its section 19.4 that “it is 
RECOMMENDED that applications signing any part of the SOAP body sign the entire body.” 
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However, the WS-Sec-Pol specification is absolutely clear about this point itself (cf. OASIS 
2009b, section 4.1.1). 
 
All in all, none of the core interoperability problems detected is due to violating WS-I profiles. 
Only 1 issue out of 10 is reinforced by the BSP. This, taken together with the test results of the 
previous section, seems to imply that the approach of replacing true interoperability testing by 
WS-I compliance checking and neglecting the relation between WS-Sec-Pol/WS-RM-Pol 
assertions and SOAP messages is not sufficient for ensuring interoperability between WS stacks. 
Note that WS-I does not question the use of WS-Policy standards. The RSP recommends using 
WS-RM-Pol, the BSP states that “strict policy specification and enforcement regarding which 
message parts are to be signed” (WS-I 2010a, section 19.4) is a countermeasure against attacks, 
and the so-called delivery package of the RSP ships with a few WS-Policy definitions (though 
without defining the effect on SOAP messages in detail). However, it leaves out a detailed 
treatment of WS-RM-Pol and WS-Sec-Pol. 

 
FUNCTIONALITY ASSESSMENT 
 
The content presented so far demonstrates that interoperable implementation of WS-* 
functionality according to definition 1 cannot be expected and that current WS stack 
implementations do not cover considerable parts of WS-RM-Pol and WS-Sec-Pol functionality. 
This information does not reveal in how far real-world scenarios of WS-* functionality can be 
implemented using today’s stacks. Even if interoperable WS-* functionality is not available there 
are use cases of WS-RM and WS-Sec that are desirable for homogeneous environments as well. 
Content-level encryption and signing of XML messages allows for multi-party scenarios that 
barely can be matched using transport level security methods. The combination with additional 
WS-* standards such as WS-Trust (OASIS 2009d) and WS-SecureConversation (OASIS 2009e) 
allows integration scenarios that obviate the need of mutual security certificate exchanges outside 
the actual Web Services interaction. In order to assess the accessibility of advanced WS-* 
functionality, we review the implementability of the so-called Secure WS-ReliableMessaging 
Scenario (SecRM scenario) as a benchmark for the two WS stacks under test of this work. This 
scenario resulted from the interaction of major Web Services vendors who conceived it as real 
world use case for Web Services interaction (Gavrylyuk, Hrebicek et al. 2005). Additionally, this 
scenario has formally been validated by two independent research groups (Backes, Mödersheim 
et al. 2006; Bhargavan, Corin et al. 2007) and the analyzed properties such as mutual 
authentication have been identified as essential for Web Services-based Business-to-Business 
integration (B2Bi) (Schönberger, Wirtz et al. 2010). 
 
The purpose of the SecRM scenario is the reliable exchange of confidential, authenticated and 
integrity-protected messages without frequent key exchanges (cf. Backes, Mödersheim et al. 2006; 
Bhargavan, Corin et al. 2007, for more detailed descriptions of security properties). In order to 
achieve these goals WS-Sec, WS-RM, WS-Trust, WS-SecureConversation as well as WS-
Addressing are combined for establishing a WS-SecureConversation session (or security context) 
which is then used to reliably and securely exchange messages. Basically, the SecRM scenario 
consists of a key-exchange phase, a message sending phase and a termination phase (Backes, 
Mödersheim et al. 2006). The key-exchange phase generates a so-called Security Context Token 
(SCT) and uses asymmetric keys for integrity as well as confidentiality protection of WS-
SecureConversation bootstrap messages. After the generation of the security context, a WS-RM 
sequence is initiated which is used for exchanging payload messages. Once the exchange of all 
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payload-messages has been acknowledged, the WS-RM sequence as well as the security context 
are subsequently terminated. 
 
The steps listed below describe the interactions between client and sender role of the SecRM 
scenario and reflect the definitions of (Backes, Mödersheim et al. 2006) and (Gavrylyuk, 
Hrebicek et al. 2005, pages 34-60). The prefixes wsrm, wss, wst, wsu and env are used to 
identify concepts of the WS-RM, WS-Sec, WS-Trust, WS-Sec utility and SOAP standards, 
respectively. 
 

1) RequestSecurityToken RST 
The client sends a message containing a RST to the service, asking the service to issue a 
SCT. This message must be signed and encrypted by the client using the service’s public 
key. 

2) RequestSecurityTokenResponse RSTR 
The service responds with a RSTR message, containing the requested SCT. This message 
must be signed and encrypted by the service using the client’s public key. The SCT must 
be used for signing and encrypting any message of the subsequent message flow. 

3) CreateSequence 
The client sends a wsrm:CreateSequence message to the service. This message 
includes a wss:SecurityContextReference to reference the SCT received in 
step 2. This SCT is used to sign the wsrm:CreateSequence message and encrypt the 
wss:Signature.  

4) CreateSequenceResponse 
The service responds to the CreateSequence request with a 
wsrm:CreateSequenceResponse message. This message is also signed and the 
wss:Signature is encrypted using the SCT.  

5) Payload Message 
The client now sends signed and encrypted messages containing the payload of this 
communication. Each payload message contains a WS-ReliableMessaging sequence 
header containing at least the sequence identifier and the sequence number of the 
according message. In contrast to the previous two and following five messages, the 
payload messages have an encrypted env:Body. 

6) SequenceAcknowledgement 
The service acknowledges the receipt of the payload message(s) with a 
wsrm:SequenceAcknowledgement. The scenario definition proposes a single 
wsrm:SequenceAcknowledgement message with an empty env:Body. The 
acknowledgment headers are also signed and the wss:Signature is encrypted. 

7) TerminateSequence 
As soon as the client has received the acknowledgments for each message within the 
message sequence, it closes this sequence using the wsrm:TerminateSequence 
message defined by WS-RM. This message is signed and the wss:Signature is 
encrypted, too. 

8) TerminateSequenceResponse 
The service confirms the termination of the sequence with a signed 
wsrm:TerminateSequenceResponse message. The wss:Signature of this 
message is encrypted.  

9) CancelSecurityToken 
After termination of the WS-ReliableMessaging sequence, the client asks the service for 
cancellation of the WS-SecureConversation context using a wst:CancelTarget 
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message. The WS-Addressing header elements, the wss:Signature, and the 
wsu:Timestamp are integrity protected. Additionally, the signature is encrypted 
whereas the message env:Body is not protected. 

10) CancelSecurityTokenResponse 
The service confirms the wst:CancelTarget with a wst:RequestedToken 
Cancelled message. This message is protected in the same way as the 
wst:CancelTarget message. 

 
Once the security context is started, sender and receiver may create multiple WS-RM sessions for 
message transmission as the publications do not impose any restrictions on that. However, in 
order to fulfill the requirements of the SecRM scenario each WS-RM session that is started within 
the WS-SecureConversation security context must be closed or terminated within the same 
context. After the security context is established, all signature and encryption processes are 
performed using keys derived from the SCT. The last two messages, canceling the security 
context, are protected using SCT-derived keys, too. 
 
Note that (Gavrylyuk, Hrebicek et al. 2005) and (Backes, Mödersheim et al. 2006) make use of 
WS-ReliableMessaging version 1.0 (BEA, IBM et al. 2005) which does not define 
wsrm:CloseSequence, wsrm:CloseSequenceResponse, or wsrm:Termi 
nateSequenceResponse messages. However, these messages have been defined for 
WS-RM since version 1.1 (OASIS 2008). Therefore, message number eight 
wsrm:TerminateSequenceResponse is inserted into the message sequence as 
recommended by WS-I’s RSP (WS-I 2010b, pages 28/29). 
 
Table 2 lists the requirements of the scenario definitions for confidentiality and integrity 
protection. The corresponding message type number is put in the first column. The other columns 
show the key required for encrypting (enc) or signing (sig) the message elements 
wss:Signature (Sign), env:Body, wsu:Timestamp (TS), WS-Addressing headers 
(WS-A), WS-ReliableMessaging headers (WS-R), and wss:EncryptedKey (EncKey). The 
entry SKX stands for a session key, which is usually encrypted using the receivers public key 
(PuKY ). The private key of a party is abbreviated PrKY. If a wsc:SecurityContextToken 
is used to derive keys, these keys are labeled as DKYX. The indices X and Y are variables that are 
substituted in the table. Instead of the X a number is inserted to identify different instances of the 
corresponding key type. These instances are independent of the type of party. The index Y 
determines whether the client (C) or the service (S) is the owner of the key, e.g., PrKS denotes 
that the key used for the specified operation is the private key of the service, while DKC1 stands 
for a key derived from a SecurityContextToken by the client. Since multiple derived keys 
may be used in a SOAP message, each derived key has an assigned number, here ‘1’. The ‘∙’ 
symbol indicates that the corresponding element is present, but not protected, whereas the ‘◦’ 
means that the corresponding element is not present in this message. 
 
The defining sources of the SecRM scenario describe the messages to be exchanged in detail. 
However, no WS-Policy definitions are given to instruct the WS stacks under test to create the 
message as intended. Therefore we sketch the policy configuration of the SecRM scenario in 
section Policy Configuration that has been derived from the scenario descriptions and the 
sample messages provided in (Gavrylyuk, Hrebicek et al. 2005). Section SecRM Scenario Test 
Results then checks the generated message exchanges by platform A and B following the 
approach of section TEST APPROACH. 
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Table 2: Message Protection Requirements and Keys Required for Protection Realization as Defined 
by the SecRM Scenario 

 
 
 
Policy Configuration 
 
The policy configurations below sketch the platformindependent specification of the service’s 
WSDL definition for the SecRM scenario. In order to deploy these configurations on platform A 
and B as referred to above some specific assertions have to be defined. For example, XPath-based 
Encrypted- and SignedElements assertions have to be added to work around platform A’s 
non-compliant handling of EncryptSignature, EncryptBeforeSigning or 
Timestamp assertions (cf. above). For such details, please see (Schwalb and Schönberger 2010). 
 
The presentation of the WS-Policy definition is split up into four listings where listing 2 shows 
the security binding and WS-RM configuration for the actual payload messages, listing 3 shows 
the configuration for setting up the security context, and listings 4 and 5 show the definition of 
WS-Sec protection assertions for incoming and outgoing SOAP messages, respectively. 
 
The policy for the actual message exchange (listing 2) defines the use of WS-RM (lines 5-7) and 
WS-Addressing (lines 9-11) as well as the binding for the security context (lines 13-43). The WS-
RM assertion activates the use of WS-RM within the security context. Neither (Gavrylyuk, 
Hrebicek et al. 2005) nor (Backes, Mödersheim et al. 2006) allow to draw a conclusion about the 
delivery assurance to be used in the scenario or whether the WS-RM sequence should be bound to 
a security token using the wsrmp:SequenceSTR assertion. Conversely, the use of WS-
Addressing is required by both publications. The WS-Addressing assertion enables the use of 
WS-Addressing message header properties such as wsa:To, wsa:Action, wsa:MessageID, 
or wsa:RelatesTo for implementing functionality as required by the SecRM scenario 
definition. 
 
The setup of the security context is denoted in the sp:SymmetricBinding assertion, since 
the session key is symmetric. A sp:SecureConversationToken is established as 
protection token. This token is the base for signature and encryption key derivation 
(sp:RequireDerivedKeys assertion). The sp:BootstrapPolicy is the policy used to 
obtain the sp:SecureConversationToken from the token issuer (see listing 3 for a 
specification of this policy). Within the security context the sp:Basic128 algorithm is used for 
encryption, since (Gavrylyuk, Hrebicek et al. 2005) and (Backes, Mödersheim et al. 2006) 
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propose 128-bit cryptography. Considering the sample message structures in (Gavrylyuk, 
Hrebicek et al. 2005), the sp:Layout of the SOAP messages is a sp:Strict layout (see 
OASIS 2009b, pages 52/53) and a wsu:Timestamp must be included. Both aspects are not 
explicitly specified in (Backes, Mödersheim et al. 2006). A significant difference between the two 
scenario specifications is the protection order. Whereas (Gavrylyuk, Hrebicek et al. 2005) state 
that “signature occurs before encryption” (Gavrylyuk, Hrebicek et al. 2005, page 35) (first sign 
the body and then encrypt body and signature), (Backes, Mödersheim et al. 2006) propose to 
encrypt the message body first, then to sign the corresponding message parts including the 
env:Body, and finally to encrypt the signature. Since (Backes, Mödersheim et al. 2006) give a 
formal cryptographic analysis of this scenario, the sp:EncryptBeforeSigning assertion 
has been chosen. The sp:EncryptSignature assertion then requires the encryption of the 
wss:Signature. 
 

Listing 2. The WS-Policy for the SecRM Scenario 
1 <wsp:Policy wsu:Id ="SecureRMSessionBinding"> 
2  <wsp:ExactlyOne> 
3   <wsp:All> 
4 
5    <wsrmp:RMAssertion> 
6     <wsp:Policy/> 
7    </wsrmp:RMAssertion> 
8 
9    <wsam:Addressing> 
10     <wsp:Policy/> 
11    </wsam:Addressing> 
12 
13    <sp:SymmetricBinding> 
14     <wsp:Policy> 
15      <sp:ProtectionToken> 
16       <wsp:Policy> 
17        <sp:SecureConversationToken> 
18         <wsp:Policy> 
19          <sp:RequireDerivedKeys/> 
20          <sp:BootstrapPolicy> 
21           <! -- 
22           See the XML listing containing the BootstrapPolicy 
23           --> 
24         </sp:BootstrapPolicy> 
25         </wsp:Policy> 
26        </sp:SecureConversationToken> 
27       </wsp:Policy> 
28      </sp:ProtectionToken> 
29      <sp:AlgorithmSuite> 
30       <wsp:Policy> 
31        <sp:Basic128/> 
32       </wsp:Policy> 
33      </sp:AlgorithmSuite> 
34      <sp:Layout> 
35       <wsp:Policy> 
36        <sp:Strict/> 
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37       </wsp:Policy> 
38      </sp:Layout> 
39      <sp:IncludeTimestamp/> 
40      <sp:EncryptBeforeSigning/> 
41      <sp:EncryptSignature/> 
42     </wsp:Policy> 
43    </sp:SymmetricBinding> 
44 
45   </wsp:All> 
46  </wsp:ExactlyOne> 
47 </wsp:Policy> 
 
Listing 3 gives the policy for the sp:BootstrapPolicy (OASIS 2009b, p. 41) of listing 2. 
The sp:BootstrapPolicy defines the policy for the sp:SecureConver 
sationToken request and the sp:SecureConversationToken issuance. (Gavrylyuk, 
Hrebicek et al. 2005) and (Backes, Mödersheim et al. 2006) stipulate the use of X509 certificates 
in the sp:BootstrapPolicy, which are certified by a certificate authority. This is important 
for real-world use cases, however, for the purpose of testing platforms A and B, client and service 
are in possession of a trusted X509 certificate of each other. This change of the scenario does not 
have any effect on the policy configuration or the SOAP message traffic between client and 
service, and is therefore not relevant in this work. 
 
The sp:BootstrapPolicy in listing 3 uses an sp:AsymmetricBinding (public-key 
cryptography) with a sp:X509Token for the initiator and the recipient. The initiator should 
send his public key as wss:BinarySecurityToken to the recipient, whereas the key of the 
recipient must not necessarily be transmitted to the client. The sp:AlgorithmSuite, the 
sp:Layout, the wsu:Timestamp inclusion, the protection order, and the 
sp:EncryptSignature instruction are used analogously to the sp:SymmetricBinding 
of the main policy. 
 

Listing 3. The sp:BootstrapPolicy of the sp:SecureConversationToken 
in the SecRM Scenario 

1 <wsp:Policy> 
2 <sp:AsymmetricBinding> 
3   <sp:Policy> 
4    <sp:InitiatorToken> 
5     <wsp:Policy> 
6      <sp:X509Token sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws- 

securitypolicy/200702/IncludeToken/AlwaysToRecipient"> 
7       <wsp:Policy> 
8        <sp:WssX509V3Token10/> 
9       </wsp:Policy> 
10      </sp:X509Token> 
11     </wsp:Policy> 
12    </sp:InitiatorToken> 
13    <sp:RecipientToken> 
14     <wsp:Policy> 
15      <sp:X509Token sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws- 

securitypolicy/200702/IncludeToken/Never"> 
16       <wsp:Policy> 
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17        <sp:WssX509V3Token10/> 
18       </wsp:Policy> 
19      </sp:X509Token> 
20     </wsp:Policy> 
21    </sp:RecipientToken> 
22    <sp:AlgorithmSuite> 
23     <wsp:Policy> 
24      <sp:Basic128/> 
25     </wsp:Policy> 
26    </sp:AlgorithmSuite> 
27    <sp:Layout> 
28     <wsp:Policy> 
29      <sp:Strict/> 
30     </wsp:Policy> 
31    </sp:Layout> 
32    <sp:IncludeTimestamp/> 
33    <sp:EncryptBeforeSigning/> 
34    <sp:EncryptSignature/> 
35   </wsp:Policy> 
36  </sp:AsymmetricBinding> 
37 
38  <sp:SignedParts> 
39   <sp:Header Namespace="http://schemas.xmlsoap.org/ws/2004/08/addressing"/> 
40   <sp:Header Namespace="http://www.w3.org/2005/08/addressing"/> 
41   <sp:Body/> 
42  </sp:SignedParts> 
43 
44  <sp:EncryptedParts> 
45   <sp:Body/> 
46  </sp:EncryptedParts> 
47 </wsp:Policy> 
 
In addition to the security binding assertions, the sp:BootstrapPolicy specifies the 
message elements to be protected. The scenario definition stipulates that the WS-Addressing 
headers, the wsu:Timestamp, and the message env:Body are to be signed. The assertions in 
lines 39 and 40 of listing 3 indicate that all WS-Addressing headers must be signed (for reasons 
of compatibility the XML namespace of two WS-Addressing versions is specified), the assertion 
in line 41 defines that the env:Body must be signed. The wsu:Timestamp of a SOAP 
message must always be covered by a signature due to the sp:IncludeTimestamp definition 
in (OASIS 2009b, page 51). The encryption of the env:Body is declared in lines 44-46 and the 
encryption of the signature is asserted with the sp:EncryptSignature element in the 
binding (line 34 of listing 3). 
 
The protection assertions of the messages from the client to the service (see listing 4) and vice 
versa (see listing 5) are similar to the assertions defined in the sp:BootstrapPolicy: 
the WS-Addressing headers and the env:Body are intended for integrity protection, and the 
env:Body is also encrypted. In addition, the WS-RM header sections are signed. 
 

Listing 4. The WS-SecurityPolicy protection assertions for the input messages 
1 <wsp:Policy wsu:Id="SecureRMSessionInput"> 
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2  <sp:SignedParts> 
3   <sp:Header Namespace="http://schemas.xmlsoap.org/ws/2004/08/addressing"/> 
4   <sp:Header Namespace="http://www.w3.org/2005/08/addressing"/> 
5   <sp:Header Namespace="http://schemas.xmlsoap.org/ws/2005/02/rm"/> 
6   <sp:Header Namespace="http://docs.oasis-open.org/ws-rx/wsrm/200702"/> 
7   <sp:Body/> 
8  </sp:SignedParts> 
9  <sp:EncryptedParts> 
10   <sp:Body/> 
11  </sp:EncryptedParts> 
12 </wsp:Policy> 
 

Listing 5. The WS-SecurityPolicy protection assertions for the output messages 
1 <wsp:Policy wsu:Id="SecureRMSessionOutput"> 
2  <sp:SignedParts> 
3   <sp:Header Namespace="http://schemas.xmlsoap.org/ws/2004/08/addressing"/> 
4   <sp:Header Namespace="http://www.w3.org/2005/08/addressing"/> 
5   <sp:Header Namespace="http://schemas.xmlsoap.org/ws/2005/02/rm"/> 
6   <sp:Header Namespace="http://docs.oasis-open.org/ws-rx/wsrm/200702"/> 
7   <sp:Body/> 
8  </sp:SignedParts> 
9  <sp:EncryptedParts> 
10   <sp:Body/> 
11  </sp:EncryptedParts> 
12 </wsp:Policy> 
 
SecRM Scenario Test Results 

 
This section analyzes the SOAP message traffic produced by platforms A and B for the SecRM 
scenario by checking for the existence of relevant WS-* elements as defined in Table 2 in the 
exchanged SOAP messages. The approach taken follows the test approach outlined in section 
TEST APPROACH which is, roughly speaking, invocation of the service by a QoS-aware client, 
logging of the SOAP message traffic, and analysis of the captured message trace. 
 
The analysis of the test run on platform B shows a close match to the scenario definitions. Yet, 
the results obtained slightly deviate from the expected results, since, in general, the 
wss:Signature is not encrypted if the env:Body is not encrypted on platform B. This 
concerns message types 3, 4, 7, 8, and 9. Message type 6 contains an encrypted and signed 
env:Body, although the scenario definitions intend an empty and unprotected env:Body. 
Although this is a deviation from the scenario definition, the behavior of platform B is standard 
compliant since the “primary signature element is NOT REQUIRED to be encrypted [...] when 
there is nothing in the message that is covered by this signature that is encrypted.” (OASIS 
2009b, lines 1730/1731). Conversely, the env:Body of message type 10 is encrypted, and 
therefore the wss:Signature also is encrypted. 
 
Interestingly, a platform B client first sends a wsrm:CloseSequence message and then a 
wsrm:TerminateSequence message to terminate the sequence. The service answers both 
messages with a corresponding response message. Although this means that platform B’s 
message sequence differs from the scenario description, this is a minor deviation since both 
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message types are protected in exactly the same way and both have the same purpose. Therefore, 
the four messages are treated as two two-part message types 7 and 8 in the scenario analysis 
below. 
 
Table 3 summarizes the results of the scenario analysis on platform B. It shows the protected 
message parts and the keys used for protection. The notation conventions correspond to the ones 
defined for Table 2. 
 
Compared to platform B, the results obtained from the test runs on platform A deviate 
significantly from the scenario definitions. Concerning the message sequence, the fact that neither 
the WS-RM sequence nor the WS-SecureConversation security context is terminated or canceled 
is striking. On platform A, sequences or sessions have to be closed explicitly by addressing the 
WS-RM sequence in the source code of a client application. However, this does not fulfill the call 
for policy-based implementation of WS-* functionality (cf. section INTRODUCTION) and is 
therefore considered to be invalid. 
 
However, not only the message sequence does not comply with the SecRM scenario, but also the 
structure of several messages. The wsu:Timestamp elements have no expiration date, the 
message env:Body always is encrypted, even when the scenario does not intend a 
confidentiality protection, and platform A only uses a wss:SecurityTokenReference 
instead of an embedded wsc:SecurityContextToken. Similar to the results for platform B, 
message type 6 has an integrity and confidentiality protected env:Body which is not scenario 
compliant. Table 4 lists the protected parts and gives an overview of the keys used to realize the 
protection. The notation corresponds to the one of Table 2 and Table 3. 
 

Table 3: Message Protection and Keys Used for Protection Realization by Platform B 
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Table 4: Message Protection and Keys Used for Protection Realization on Platform A 

 
 
RELATED WORK 
 
In SOA research, considerable efforts have been undertaken towards testing QoS, for example 
(Canfora and Di Penta 2006-2008; Bertolino, Angelis et al. 2007), in the traditional sense of 
measurable network qualities like throughput or latency. (Shopov and Kakanakov 2007) provide 
an evaluation of the WS-Sec implementation of the Axis2 WS stack, but only consider the 
processing time and message size when using different WS-Sec features. In contrast, we focus on 
testing the interoperability of implementations of QoS features as provided by WS-* standards 
and security and reliability in particular. 
 
(Barbir, Hobbs et al. 2007) discuss challenges of testing Web Services and security in SOA 
environments. Interoperability is identified as a core requirement for testing service compositions, 
but an interoperability assessment of different WS-* implementations is not provided. Several 
approaches such as (Shetty and Vadivel 2009; Bertolino and Polini 2005) target at testing 
interoperability of Web Services, but do not consider WS-* based QoS features. 
 
In the area of actually testing interoperability of WS-* based QoS features, the majority of 
approaches follows (Tsai, Zhou et al. 2008) in defining interoperability testing as “Conformance 
testing to ensure compliance with SOA protocols and standards”. (Bhargavan, Fournet et al. 
2005) describe a tool for statically validating WS-Sec-Pol configurations and (Nakamura, Sato et 
al. 2007) demonstrate how to use predicate logic to statically validate security policies. (Gruschka, 
Luttenberger et al. 2006) present an approach for checking SOAP messages for WS-Sec-Pol 
conformance at run-time. (Prennschütz-Schützenau, Mukhi et al. 2009) check conformance to the 
BSP statically and dynamically by inspecting SOAP messages. All these approaches analyze the 
configurations and message traffic of a single WS stack instance whereas we focus on the 
interaction of two WS stack instances of different solution providers. While we investigate 
whether or not communication can be completed successfully these approaches are able to check 
conformance to the WS-* specifications. In so far, these kind of approaches and our approach can 
be considered to complement each other. 
 
(Simon, László et al. 2010) present an interoperability assessment of SOA products with respect 
to WS-* standards for the Hungarian e-Government infrastructure. They evaluate only two 
security related test cases, but six SOA products and conclude that some products (including 
Metro/GlassFish) are mature for WS-* interoperability. The problems identified in the work at 
hand, however, reveal that much more thorough testing is needed. 
 
(Menzel, Warschofsky et al. 2010b) provide a mature framework for testing, monitoring and 
analyzing Web Services that are secured via WS-Sec-Pol. While interoperability assessment 
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across different stack vendors is out of scope, it may be useful for streamlining the 
interoperability assessment of more WS stacks as described in this work. Moreover, the pattern-
based approach for deriving WS-Sec-Pol configurations described in (Menzel, Warschofsky et al. 
2010a) may be used for deriving test cases that go beyond this work’s test cases in providing 
application level features such as mutual authentication. 
 
The Secure WS-ReliableMessaging Scenario has been analyzed by two different research groups 
(Backes, Mödersheim et al. 2006; Bhargavan, Corin et al. 2007). However, the focus of these 
projects was on formal analysis of security and reliability properties and not on policy-based 
realization. The original definition of the SecRM scenario stems from industry interoperability 
workshops and (Gavrylyuk, Hrebicek et al. 2005) provide a good description of the messages that 
are to be exchanged. However, the WS-Policy configurations for implementing the scenario are 
not given. One of the original authors of the SecRM scenario was asked for an updated version of 
the SecRM scenario that makes use of the latest WS-RM, WS-RM-Pol and WS-SecPol standards, 
but no updated version was available. Consistently, we were not able to discover an evaluation of 
the SecRM scenario support by WS stacks based on policy-based realization. 

 
CONCLUSION AND FUTURE WORK 
 
In this paper, we have thoroughly analyzed the interoperable implementation of WS-Sec-Pol/WS-
RM-Pol by two major Java-based WS stacks. Our results show that Web Services developers 
cannot rely on interoperability of such WS-* features as provided by arbitrary WS stacks. While 
WS-I’s work indisputably contributed to better Web Services interoperability, it apparently is not 
sufficient for guaranteeing interoperability of WS-Policy-driven QoS implementation. Using 
WS-Sec/WS-RM without WS-Policy however places unacceptable burdens on Web Services 
developers in requiring them to manually manipulate SOAP messages and agreeing on security 
mechanisms without predefined format. Functionality-wise we could prove that advanced real-
world functionality can be implemented using WS-Sec-Pol and WS-RM-Pol. However, the 
choice of WS stack may severely influence availability and standards compliance of the solutions. 
Clearly, the identification of a broader range of advanced real-world usage scenarios is necessary 
to give practitioners a lever for deciding upon the use of WS-* or a particular WS-stack. 
 
Future work therefore will focus on gathering more realistic use cases that justify the use of WS-* 
standards. Combined with the approach for systematically testing the basic functionality of WS-* 
standards, a comprehensive set of WS-Policy-based test cases shall be derived that can be used 
among WS stack vendors to assess cross-stack interoperability on the one hand and to ensure the 
availability of reasonable functionality on the other hand. Additionally, automated 
interoperability testing procedures are needed to streamline interoperability testing between 
various WS stacks in different versions. 
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