BAMBERGER BEITRAGE
ZUR WIRTSCHAFTSINFORMATIK UND ANGEWANDTEN INFORMATIK
ISSN 0937-3349

Nr. 66

Concealing Presence Information
in Instant Messaging Systems

Markus Dorsch, Martin Grote,
Knut Hildebrandt, Maximilian Roéglinger,
Matthias Sehr, Christian Wilms,
Karsten Loesing, and Guido Wirtz

April 2006

FAKULTAT WIRTSCHAFTSINFORMATIK UND ANGEWANDTE INFORMATIK
OTTO-FRIEDRICH-UNIVERSITAT BAMBERG

Distributed and Mobile Systems Group

Otto-Friedrich Universitat Bamberg
o Feldkirchenstr. 21, 96052 Bamberg, GERMANY

Prof. Dr. rer. nat. Guido Wirtz

http://www.uni-bamberg.de/en/fakultaeten/wiai/faecher/informatik/lspi/

Due to hardware developments, strong application needs and the overwhelming influence of
the net in almost all areas, distributed and mobile systems, especially software systems, have
become one of the most important topics for nowadays software industry. Unfortunately, distri-
bution adds its share to the problems of developing complex software systems. Heterogeneity in
both, hardware and software, concurrency, distribution of components and the need for inter-
operability between different systems complicate matters. Moreover, new technical aspects like
resource management, load balancing and deadlock handling put an additional burden onto the
developer. Although subject to permanent changes, distributed systems have high requirements
w.r.t. dependability, robustness and performance.

The long-term common goal of our research efforts is the development, implementation and
evaluation of methods helpful for the development of robust and easy-to-use software for com-
plex systems in general while putting a focus on the problems and issues regarding the software
development for distributed as well as mobile systems on all levels. Our current research acti-
vities are focussed on different aspects centered around that theme:

e Robust and adaptive Service-oriented Architectures: Development of design methods, lan-
guages and middleware to ease the development of SOAs with an emphasis on provable
correct systems that allow for early design-evaluation due to rigorous development me-
thods and tools. Additionally, we work on approaches to autonomic components and
container-support for such components in order to ensure robustness also at runtime.

o Agent and Multi-Agent (MAS) Technology: Development of new approaches to use Multi-
Agent-Systems and negotiation techniques, for designing, organizing and optimizing com-
plex distributed systems, esp. service-based architectures.

o Peer-to-Peer Systems: Development of algorithms, techniques and middleware suitable for
building applications based on unstructured as well as structured P2P systems. A specific
focus is put on privacy as well as anonymity issues.

o (Context-Models and Context-Support for small mobile devices: Investigation of techni-
ques for providing, representing and exchanging context information in networks of small
mobile devices like, e.g. PDAs or smart phones. The focus is on the development of a tru-
ly distributed context model taking care of information reliability as well as privacy issues.

e Visual Programming- and Design-Languages: The goal of this long-term effort is the uti-
litization of visual metaphores and languages as well as visualization techniques to make
design- and programming languages more understandable and, hence, easy-to-use.

More information about our work, i.e., projects, papers and software, is available at our ho-
mepage. If you have any questions or suggestions regarding this report or our work in general,
don’t hesitate to contact me at guido.wirtz@wiai.uni-bamberg.de

Guido Wirtz
Bamberg, April 2006

Concealing Presence Information
in Instant Messaging Systems

Markus Dorsch, Martin Grote,
Knut Hildebrandt, Maximilian Roglinger,
Matthias Sehr, Christian Wilms,
Karsten Loesing, and Guido Wirtz

Lehrstuhl fiir Praktische Informatik, Fakultdt WIAI

http://www.lspi.wiai.uni-bamberg.de/dmsg/software /hashky /

Abstract Information about online presence allows participants of instant messaging (IM)
systems to determine whether their prospective communication partners will be able to answer
their requests in a timely manner, or not. That is why presence information, combined with
the ability to send instant messages, makes IM more personal and closer than other forms of
communication such as e-mail. On the other hand, revelation of presence constitutes a potential
of misuse by untrustworthy entities. A possible threat is the generation of online logs disclosing
user habits. This makes presence information a resource worth protecting. We argue, however,
that current IM systems do not take reasonable precautions to protect presence information.

We implemented an IM system designed to be robust against attacks to disclose a user’s pre-
sence. In contrast to existing systems, it stores presence information in a registry in a way that
is only detectable and applicable for intended users and not comprehensible even for the registry
itself. We use a distributed hash table (DHT) as registry and apply an anonymous communi-
cation network to protect the physical addresses of both senders and receivers of messages.

Keywords Instant Messaging, Presence Information, Anonymity, Peer-to-Peer

Contents

1 Introduction

2 Requirements

3 Design Decisions

3.1 Essential Design Decisions
3.2 Structure of a Hash Key

3.3 Structure of a Hash value

4 System architecture

4.1 Roles of the IM service

4.2 Interplay of the roles

5 Standard Use Cases

5.1 Preparatory Activities

5.2 Single Communication Session . .

6 Client-to-Chord Protocol

6.1 Protocol Sequence: Retrieve Contact Information

6.2 Protocol Sequence: Publish Own Contact Information

6.3 Protocol Sequence: Time Synchronization

7 Client-to-Client Protocol

7.1 Protocol Sequence: Generate Session Key

7.2 Protocol Sequence: Notify Of Presence Status

7.3 Protocol Sequence: Send Instant Message

7.4 Protocol Sequence: Going Offline

8 Possible Threats

10

11

11

11

13

14

14

14

IT

8.1 Attacks From Inside the IM Service

8.2 Attacks From Outside the IM Service

9 Conclusion

Bibliography

A List of previous University of Bamberg reports

17

18

19

1 Introduction

Presently, instant messaging (IM) services are evolving from an informal chat tool to a widely
accepted communication medium. According to several surveys, the employment of IM for
business communication is steadily increasing and has the potential to replace email as currently
mostly employed communication medium. In this context, security problems become more
obvious and critical.

One important component of IM services is presence information of potential communication
partners which constitutes a non-negligible additional value compared to other synchronous
communication media, e.g. the telephone. In case of telephones, the availability of the inter-
locutor cannot be determined until the actual communication takes place. It is for this reason
that other services like Voice over IP (VoIP) (see Skype!) integrate presence information more
and more.

This fact makes presence information a resource worth securing in IM services. The creation
of online logs of certain users could be considered as an imaginable misuse that allows the
deduction of private or non-private behavioral patterns. Current IM and VolP services, like
ICQ?, Yahoo?, MSN*, and Skype, deposit their users’ presence information on physically central
entities and barely make arrangements to prevent misuse.

This project aims at realizing confidentiality of presence information on the one hand as well
as private communication between communication partners on the other hand. This technical
report describes the technical realization rather than the design decisions of the project. For a
more elaborate description of the underlying concepts refer to [LDG06].

The remainder of this paper is structured as follows: Section 2 summarizes and elaborates the
requirements of this project, whereas section 3 discusses the most important design decisions.
Afterwards, section 4 introduces the architecture of the system. Section 5 describes client-
specific issues and preparatory activities. Sections 6 and 7 give a detailed survey of the required
protocols between the involved parties. Section 8 describes possible attacks on the system.
Finally, section 9 concludes the report.

2 Requirements

From a functional point of view, our IM service has to implement the basic functions provided
by existing IM services. In particular, this includes the sharing of presence information as well
as the exchange of instant messages with other users.

Confidentiality of presence information as well as private communication between communica-
tion partners are further requirements.

http://www.skype.com
’http://wuw.icq.com
3http://messenger.yahoo.com/
‘http://messenger.msn.com

http://www.skype.com
http://www.icq.com
http://messenger.yahoo.com/
http://messenger.msn.com

2 3 DESIGN DECISIONS

More precisely, all users of the IM service must be provided with a relatively high degree of
anonymity [PHO5] against attackers from inside and outside the system. The presence status of
a user must be neither directly visible nor indirectly observable or deducible for attackers. This
requires the camouflaging of presence information on a logical and a physical system layer.
Further, concerning instant message exchange, both sender and receiver of a message must
remain anonymous during communication. Their physical locations® must be neither revealed
nor directly accessible to both parties.

Additionally, the IM service must guarantee its users’ anonymity with a certain degree of
robustness. In particular, a central entity that is responsible for storing presence or contact
information and therefore constitutes a single point of failure is not sufficient. The higher
the level of robustness required, the more administrative overhead the IM service will have to
manage. Hence, there is a trade-off between system efficiency and level of robustness. As a last
aspect, anonymity should be as transparent to the user as possible and barely cause additional
effort.

To summarize, the basic non-functional goal of the IM service is to provide its users a high
level of anonymity by employing techniques of encryption and camouflaging on both, logical
and physical system layers.

3 Design Decisions

The requirements described in section 2 have an impact on the design of the IM service. This
section provides a survey of the most important design decisions. After that we describe the
structure of the hash keys and values stored in the Chord network.

3.1 Essential Design Decisions

As described in the requirements, a centralized client-server approach does not fulfill the require-
ments of a flexible, robust, and attacker-resistant system architecture, because it constitutes a
single point of failure. Hence, the IM service is based on peer-to-peer (P2P) technology. As
a consequence, the clients exchange instant messages and share their presence statuses only
directly and not intermediated by a centralized server. Though being less efficient, this solution
supports the P2P approach, in particular robustness.

A distributed hash table (DHT) is employed for the storage and retrieval of information in
the P2P system because it provides a comfortable and easy-to-use interface and places few
constraints on the structure of keys and data to be stored. As an efficient DHT a Chord
[SMLN"03] implementation is available for the project. Client nodes are not part of the Chord
network, because they should be connected to as few other nodes as possible.

In order to fulfill the anonymity requirements, Tor [DMS04] was chosen as anonymous com-

5Physical location means a physical address, e.g. IP-address and port

3.2 Structure of a Hash Key 3

munication network which is based on onion routing. It realizes sender and receiver anonymity
unlike other anonymization tools like Java Anon Proxy (JAP)® which only provides anonymity
of the sender.

3.2

Structure of a Hash Key

A hash key consists of the following components:

The publisher ID is a unique identifier for the publisher of contact information.
The receiver ID is a unique identifier for the receiver of contact information.

The common secret is only known to the publisher and the receiver of the contact infor-
mation. It is needed to enable only the publisher and the receiver to generate the hash
key where the contact information is stored. The publisher and the receiver have to agree
on the common secret before the initial communication. Moreover, it should be changed
from time to time.

The dynamic component is an integer value that causes the hash key to change during
time and hence modify its position in the DHT. The dynamic component may be public
(to avoid even more agreement overhead). It is worthless for an intruder that does not
know the common secret.

Without the dynamic component the contact information for a specific contact would
always be stored on the same node in the Chord network. From this, an evil Chord node
or an evil observer outside the system would gain presence information and therefore
violate the anonymity goal of the IM service. Hence, it is inevitable that the client’s
contact information “changes its position” in the Chord network. The only way to do this
is to periodically (but systematically) change the hash key. Therefore the structure of the
hash key includes a dynamic component.

A straightforward possibility to implement the dynamic component is for example to take
the hour component of the global time, because it increases monotonically and needs no
further agreement of the involved parties.

The indez is a set of predefined integer values (e.g. 0—4) that are used to store the hash
value on different nodes in the Chord network. The index must not be confounded with
the dynamic component. The index realizes some way of replication so that no single node
of the Chord network (which of course is possibly evil) is able to compromise a client’s
contact information.

In order to conceal the values of the described components the plain key has to be hashed by
a hash function, e.g. SHA-1.

Shttp://anon.inf.tu-dresden.de/

http://anon.inf.tu-dresden.de/

4 4 SYSTEM ARCHITECTURE

3.3 Structure of a Hash value

A hash value consists of the following components:

e The timestamp allows the receiver of the contact information to verify which entry in
the DHT is the most recent. This is necessary, because an evil Chord node may discard
entries or at least hold them back for some time.

e The contact information allows its receiver to establish communication with the publisher
of the contact information. Currently, the contact information is a Tor-specific URL.

e The index is a set of integer values that are used to modify the encrypted and signed
hash value. Otherwise identical hash values are associated to different hash keys (because
of the hash key’s indices). An attacker that controls several Chord nodes could retrieve
several contact information entries (because they have identical hash values) and therefore
compromise the contact information.

The hash value is signed with the publisher’s private key and encrypted with the receiver’s
public key in order to ensure that only the designated client is able to decrypt the hash value
and to avoid that an evil Chord node modifies the contact information maliciously.

A combination of symmetric and asymmetric encryption and signing technologies was chosen
to ensure secure message exchange between communication partners.

4 System architecture

This section provides a global view of the system architecture of the IM service and is struc-
tured as follows: Firstly we introduce the basic roles, explain their functions, and deduce the
corresponding protocols that organize the interplay between the roles. Next, we describe the
interplay of these roles.

4.1 Roles of the IM service

The architecture of the IM service consists of three roles which have their own characteristics
and responsibilities. Each role has to perform specific functions to contribute to the overall
operability of the system. The three roles are:

e Clients

e Chord nodes

e Tor nodes

4.1 Roles of the IM service 5

Further, the protocol relies on the following servers being present in the network, possibly
replicated on multiple nodes:

e Chord node list server

e Time server

e PGP server

4

|

)

|

|

|

|

|

|
\%

Protocol Server
rd

Client-To-Chord
.
7 Chord
Serverlist

Protocol
Client-To-Client

€~ =~-=-==> Logical communication

&————> Physical communication

Figure 1: System architecture

Figure 1 shows the system architecture including the roles. In order to organize the interplay
between the roles three different protocols have to be formalized (the Client-to-Chord protocol,
the Client-to-Client protocol, and the Chord protocol itself). Referring to the design decisions
and the requirements, the Tor network is assumed to be given. Hence, the Tor protocols are
transparent for the IM service.

Client: A client represents a user in the system who shares his presence information and
exchanges instant messages with other users. Therefore, a client keeps a local list of all of the
user’s contacts (referred to as contact list in the rest of the document).

The client” is responsible both for sharing its user’s presence status with all other users on
the local contact list and for sending and receiving instant messages with other users. Clients

"In the following, the expressions client and user are used synonymously.

6 4 SYSTEM ARCHITECTURE

which communicate with other clients must conform to the Client-to-Client protocol. Moreover,
a client interacts with Chord nodes (which act here as access points to the DHT) in order to
initially retrieve the contact information of its contacts or to update its own contact information
for offline contacts. Clients which communicate with Chord nodes must conform to the Client-
to-Chord protocol. A client distinguishes several availability statuses: Available (A), Be right
back (BRB), Do not disturb (DND), Extended Away (XA), Not Available (NA), and Offline
(OFF). Note that the communication between clients and Chord nodes is always realized using
anonymous communication.

Chord node: Referring to the design decisions, a DHT is employed to store and retrieve contact
information. The DHT is implemented and organized by a set of Chord nodes. Each node is
locally responsible for a set of entries with affiliated IDs. Further, each node knows its neighbors
and other nodes in order to build up the ring structure and to enable the search for data.

Tor node: As described in the requirements, confidentiality of presence information and private
communication must be guaranteed by providing sender and receiver anonymity. To implement
anonymity, we choose the external Tor network project which is based on the onion routing
concept®. Here, instead of taking the direct way from the sender to the receiver, messages
follow a randomly chosen path through the Tor network. A message can be considered as
a nested object where each layer encapsulates the following layers and the next destination
within the path. Upon receiving a message, a Tor node (also known as onion router) removes
the outmost layer—which is the only layer that can be removed with the Tor node’s private
key—and forwards the message to the next router or the final receiver. Hence, a Tor node knows
neither its position in the path nor the complete path. This makes it difficult for observers to
determine identity and location of the sender and the receiver.

4.2 Interplay of the roles

Figure 1 illustrates the interplay of the described roles (note that users have to agree upon a
common secret outside the IM service before the interaction within the IM service is possible).
Clients logically communicate with other clients to share presence information and to exchange
instant messages. The physical communication is based on the Tor network to guarantee
anonymity. Further, clients logically communicate with Chord nodes to store and retrieve
contact information in and from the DHT. Finally, clients communicate with key servers and
Chord node list servers in order to retrieve the keys of yet unknown contacts and the list
of available Chord nodes. Chord nodes communicate to organize the DHT and to request the
global time of external time servers. As Chord nodes are known to each other, no anonymization
over the Tor network is needed.

8For detailed information see http://www.onion-router.net/

 http://www.onion-router.net/

5 Standard Use Cases

Clients which want to take part in the IM service have to perform several preparatory activities.
Additionally, the behavior of a client has to conform to a sequence of actions during a single
communication session.

5.1 Preparatory Activities

In order to communicate and to exchange presence information, two clients have to perform
the following steps: At first, they have to exchange their identifiers because there is neither
a central nor a distributed lookup service for user identifiers implemented in the IM service.
After that, they have to agree upon a common secret which is exclusively known to them and
therefore should be changed in regular intervals. Finally, the clients may have to exchange their
public keys, if necessary. In order to keep the system as simple as possible, it is assumed that
the client accomplishes all of these activities outside the IM service, e.g. over email.

5.2 Single Communication Session

Client

Retrieve list of available Chord nodes [Retrieve contact information from DHT)

T N

Propagate own presence information

Synchronize with global time via Chord nodes
Communicate with contacts
Retrieve contact information from DHT
Leave system and propagate to contacts
Store own contact information in DHT

,)
O

Figure 2: Client behavior during a single communication session

Figure 2 illustrates the sequence of a standard communication session of a client.

Retrieve list of available Chord nodes: Initially, before entering the IM service, the client has
to retrieve a list of the available Chord nodes from a previously known server.

Synchronize with global time via Chord nodes: The client has to synchronize its local time with
the global time. This involves an indirect communication with external time servers via known
Chord nodes, because a direct communication would reveal the presence of the client. This is
part of Client-to-Chord protocol.

8 6 CLIENT-TO-CHORD PROTOCOL

Retrieve contact information from DHT': The client retrieves the contact information of all of
its contacts from the DHT. Using this information the client concludes how to reach each of its
contacts in order to notify them of its presence status and to retrieve their presence statuses.
This is part of Client-to-Chord protocol.

Store own contact information in DHT: If there is no contact information for a contact in
the DHT, he is assumed to be offline, i.e. at least there is no possibility for the client to
establish a communication. The client stores its own contact information for each offline contact
in the DHT. Another client that logs into the system at a later time is able to establish a
communication with this contact information. This is part of Client-to-Chord protocol.

Retrieve contact information from DHT (Second time): In order to prevent the situation that
two clients miss themselves out, it is necessary that a client which has left its contact information
in the DHT, retrieves the contact information of contacts considered offline a second time. This
is part of Client-to-Chord protocol.

Propagate own presence information: If there are entries in the DHT, the contact is possibly
online in the IM service. More precisely, the contact is not necessarily online, because the
contact information may be out of date. This may occur in two cases: Firstly, if the contact
crashes. Secondly, if the contact has successfully signed off and the garbage collection of the
DHT has not yet deleted the obsolete entries. The client informs each contact who is possibly
online of his presence status. While being present in the IM service, a client periodically®
updates its contact information in the DHT for each offline contact. Note that the client itself
never deletes any entry from the DHT, because this would require a means for authorization
which we wanted to avoid. This task is undertaken by the DHT’s garbage collection. This is
part of Client-to-Client protocol.

Communicate with contacts: The client sends and receives instant messages to and from other
contacts. This is part of Client-to-Client protocol.

Leave the system and propagate to contacts: The client has to inform each online contact that
it leaves the system. There is no further interaction with the Chord nodes, because the obsolete
entries with its contact information will be deleted by the DHT’s garbage collection. This is
part of Client-to-Client protocol.

6 Client-to-Chord Protocol

This section describes protocol sequences that occur in the Client-to-Chord protocol. Table 1
contains the messages which are exchanged in this protocol.

9The interval of the DHT’s garbage collection could be harmonised with the dynamic component in order to
reduce update traffic

6.1 Protocol Sequence: Retrieve Contact Information

RPC Type | Purpose Initiator | Responder | Request parame- | Reply parameters
ters
RETRIEVE | Requests the re- | Client Chord Hash key of the | Hash values corre-
trieval of an entry node hash values to be | sponding to hash
by its unique key retrieved key; Status
INSERT Requests the in- | Client Chord Hash key of | Completion state
sertion of a new node the entry to be | (successful or
entry inserted; Hash | failed); Cause of
value of the entry | a failed request
to be inserted
TIME Requests current | Client Chord — Current time
SYNCHRO- | time to synchro- node
NIZATION nize local time

Table 1: Client-to-Chord Message Types

6.1 Protocol Sequence: Retrieve Contact Information

When logging into the system, a client retrieves the contact information of its contacts from the
DHT. Using this information the client concludes how to reach the contact in order to notify
it of its presence and request its contacts’ presence.

In order to ensure resilience against evil Chord nodes, the client has to check several entries in
the hash table for each contact, because an evil Chord node could deliberately discard previously
stored entries or at least hold them back for some time. Different hash keys are generated for
one contact information by alternating or incrementing the index value.

The client repeats the following steps for each contact:

1. Generate the hash keys for the request. As explained above, several hash keys have to be
generated by altering the index value.

2. Create as much RETRIEVE REQUEST messages as there are hash keys and encapsulate
each generated hash key in one message. Then, send all messages to different known Chord
nodes. It is important to choose different Chord nodes, because a single evil Chord node
receiving all messages could simply discard them and hence reject the entire request.

After receiving an incoming RETRIEVE REQUEST message a Chord node has to perform the
following steps:

3. Retrieve the hash value corresponding to the requested hash key. This is part of the
Chord-to-Chord protocol.

4. Create a RETRIEVE REPLY depending on the result of the retrieval:

(a) If a hash value corresponding to the requested hash value has been found, create
a RETRIEVE REPLY message that encapsulates the hash value and set its state to
SUCCESSFUL.

10 6 CLIENT-TO-CHORD PROTOCOL

(b) If no hash value has been found, create a RETRIEVE REPLY message and set its
state to FAILED.

5. Send the RETRIEVE REPLY message to the client
The client processes the received RETRIEVE REPLY message:

6. If the state is SUCCESSFUL, the contact is considered to be possibly online. More precisely,
the contact is not necessarily online, because the contact information may be out of date.
This may occur in two cases: Firstly, if after the contact’s crash the garbage collection of
the DHT has not yet deleted the obsolete entries. Secondly, if after the contact’s successful
sign off the garbage collection of the DHT has not yet deleted the obsolete entries. The
client has to inform the contact of his own presence status.

7. If the state is FAILED, the contact is considered to be offline. To ensure that the contact
is able to establish communication with the client when it goes online, the client has to
store its own contact information in the DHT. The detailed protocol sequence is explained
next.

6.2 Protocol Sequence: Publish Own Contact Information

For each contact that is considered to be offline the client has to store its own contact infor-
mation in the DHT, so that the contact can establish communication with the client when it
logs into the system by itself. In order to ensure robustness against evil Chord nodes, the client
has to store several entries in the DHT for each offline contact, because an evil Chord node
could deliberately modify or discard stored entries or at least hold them back for some time.
Different hash keys for a contact information are generated by incrementing the index value.

The client repeats the following steps for each contact:

1. Generate the hash keys for the request. Several hash keys are generated by altering the
index value.

2. Generate the hash value. After that, the hash value is signed with the sender’s private
key and encrypted with the contact’s public key.

3. Create as much INSERT REQUEST messages as there are hash keys and encapsulate each
generated hash key together with the hash value in one message. Send all messages to
different known Chord nodes.

After receiving an incoming INSERT REQUEST message a Chord node has to perform the
following steps:

5. Insert the hash value and the hash key in the DHT.

6.3 Protocol Sequence: Time Synchronization 11

6. Create an INSERT REPLY depending on the insertion state:

(a) If the insertion was successful, create an INSERT REPLY message and set its state to
SUCCESSFUL.

(b) If the insertion was not possible for a Chord-specific reason, create an INSERT REPLY
message and set its state to FAILED.

7. Send the INSERT REPLY message to the client
Finally, the client processes the received INSERT REPLY message depending on its state:

8. If the state is SUCCESSFUL, there is nothing more to do.
9. If the state is FAILED, the client contacts another Chord node.

During presence in the IM service, a client periodically updates its contact information in the
DHT. For each offline contact it stores again the specified number of entries.

6.3 Protocol Sequence: Time Synchronization

A client does not request the time service directly in order to perform time synchronization but
indirectly via a Chord node.

In order to retrieve the current time the client has to perform the following steps:

1. The client creates a request for time synchronization to a Chord node.

2. The Chord node requests the current time from the time service and replies to the client
request.

7 Client-to-Client Protocol

Clients communicate with other clients to share presence information and to exchange instant
messages. The Client-to-Client protocol specifies the message transfer between clients. Table
2 contains the messages which are exchanged in this protocol.

7.1 Protocol Sequence: Generate Session Key

Before a client is able to establish a communication with one of its contacts, it has to exchange
a symmetric session key with it. The session key is valid until one of the two communication
partners goes offline (or crashes).

12 7 CLIENT-TO-CLIENT PROTOCOL
RPC Type | Purpose Initiator | Responder | Request parame- | Reply parameters
ters
INiT SES- | Initializes a ses- | Client Client Symmetric ses- | Acknowledgment
SION sion with the | which with sion key (en- | for a session key
receiver by ex- | aims at | which the | crypted with | (encrypted with
changing the | open- session public key), | symmetric session
symmetric session | ing the | shall be | Initial status key)
key session opened
NoOTIFY Notifies the re- | Client Client Presence status | —
STATUS ceiver of the cur- | which which (encrypted with
rent presence sta- | changes is to be | symmetric session
tus of the sender | or re- | informed | key)
news its | of the
presence | presence
status status
change or
renewal
INSTANT Conveys an in- | Client Client Instant message | —
MESSAGE stant message | which which text (encrypted
from the sender | sends an | receives with symmetric
to the receiver instant an instant | session key)
message | message

Table 2: Client-to-Client Message Types

In order to exchange a session key a client performs the following tasks:

1. Generate a symmetric session key.

2. Create an INIT SESSION message containing the session key and a timestamp to prevent
replay attacks.

3. Sign the message with the private key of the client and encrypt it with the contact’s public

key.

4. Send the message to the contact.

Upon receiving an INIT SESSION message, the contact performs the following tasks:

5. Decrypt the message with the contact’s private key and verify the signature with the
public key of the sending client.

6. Check if the timestamp is up to date. If it is out of date, ignore the message.

7. Create an INIT SESSION REPLY message.

8. Encrypt the message with the received symmetric session key.

7.2 Protocol Sequence: Notify Of Presence Status 13

9. Send the message to the client.

Upon receiving the INIT SESSION REPLY message, both the clients use the symmetric session
key instead of the contact’s public key for the rest of the session.

7.2 Protocol Sequence: Notify Of Presence Status

A client is responsible for periodically propagating its own presence status to all other clients
which it considers to be "online” when it initially goes “online” as well as during presence in the
IM service. For each contact which is considered to be "online” the client repeats the following
steps:

1. Create a NOTIFY STATUS message containing the current presence status of the client
and a timestamp to prevent replay attacks.

2. Encrypt the message with the previously generated session key.
3. Send the message to the receiver.

4. The further proceeding depends on the state of the message delivery.

(a) If the message delivery was successful, the client waits a constant interval before
renewing its presence information. Afterwards, the client checks in its local contact
table whether the contact is still considered to be "online”.

i. If the contact is still considered to be "online”, the client starts over renewing
its own presence status.

ii. If the contact is now considered to be "offline”; i.e. it has apparently signed off,
the client can stop renewing its presence status for this contact and has to leave
its contact information in the DHT.

(b) If the message delivery failed, i.e. the contact has apparently crashed, the client has
to mark the contact as “offline” in its local contact list and leave its own contact
information for the contact in the DHT.

Upon receiving the NOTIFY STATUS message the contact has to do the following steps:

1. Decrypt the message.

2. Check if the timestamp is higher than the timestamp of the last received message from
the corresponding contact. If it is not ignore the message.

3. Update local contact list.

14 8 POSSIBLE THREATS

7.3 Protocol Sequence: Send Instant Message

If a client wants to send an instant message to another client, it performs the following steps:

1. At first, the client must get the presence status of the contact to which it wants to send
a message from its local contact list.

(a) If the contact is "offline”, the message will not be sent.

(b) If the contact is "online”, the client creates an INSTANT MESSAGE that encapsulates
the instant message text and a timestamp to prevent replay attacks.
i. The client encrypts the message with the previously generated session key.
ii. The further proceeding depends on the status of the message delivery.
A. If the message delivery was successful, the protocol sequence is completed.

B. If the message delivery has failed, i.e. the contact has apparently crashed,
the client marks the contact as "offline” in its local contact list and leave its
own contact information for the contact in the DHT.

Upon receiving the INSTANT MESSAGE the contact has to perform the following steps:

1. Decrypt the message.

2. Check if the timestamp is higher than the timestamp of the last received message from
the corresponding contact. If it is not ignore the message.

7.4 Protocol Sequence: Going Offline

If a client goes "offline”, it notifies all of its "online” contacts directly. In the Client-to-Client
protocol there is no extra message type for an ”offline” notification. Instead, a client sends a
NOTIFY STATUS message containing "offline” as presence status.

8 Possible Threats

As described in the introduction, both confidentiality of presence information and private com-
munication between communication partners are the nonfunctional goals of our IM service.
It is important to examine the possible attacks on the IM service and analyze which it can
withstand and up to which degree.

8.1 Attacks From Inside the IM Service 15

8.1 Attacks From Inside the IM Service

This section describes attacks from inside the IM service. That is, an attacker maliciously
impersonates a client, one or more Chord nodes, or one or more Tor nodes and tries to directly
gain information by confusing the other parties. Since, in this context an attacker impersonates
one of the system’s roles, all attacks are performed on the logical system layer.

Infiltration of a client: If an attacker impersonates an existing client, it may strive for two
different goals. On the one hand, it may want to retrieve the contact information and the
presence status of the client’s contacts. Therefore, the attacker would have to get access to
the entries which are stored in the DHT and decrypt them properly. On the other hand, the
attacker might not be interested in gaining information, but just in confusing other clients so
that they are not able to work properly any more.

In general, we assume that the attacker neither knows the common secret nor the private
key. The client’s unique identifier and the receiver’s unique identifier are not secure and hence
accessible to the attacker. But as long as the attacker does not know the common secret of the
client, it will not be able to generate hash keys and retrieve the corresponding entries from the
DHT. Even if the attacker successfully generated the correct hash keys by chance, it would not
be able to decrypt the retrieved hash values properly.

The attacker might know the common secret of the client and one of its clients. As long as
the private key remains secret, the attacker will not be able to sign the hash values properly.
Moreover, the attacker is not able to decrypt entries from the DHT designated to the client.
But presence information from the client’s contacts is indirectly deducible from the fact that
there are entries in the DHT.

In the worst case, the attacker knows the private key and the common secret. The attacker
is now able to retrieve the corresponding entries from the DHT and decrypt the contact in-
formation. But still no physical address can be extracted because an onion address is used.
Furthermore, the attacker is able to place wrong contact information in the DHT and sign it

properly.

Infiltration of the Chord network: An attacker could also impersonate one or more nodes of the
Chord network. In this situation the attacker may have two different goals: On the one hand,
he may want to gain information about originators and receivers of contact information. On
the other hand, the attacker may want to intercept, discard, modify, or delay information to
be stored or retrieved in or from the DHT, which is crucial for the IM service.

First, we assume that the attacker is interested in information about originators and receivers of
entries. It is impossible for the attacker to succeed because the Tor network guarantees sender
and receiver anonymity, i.e. a Tor node never knows on behalf of whom it stores or retrieves
entries in and from the DHT. Furthermore, the DHT entries do not contain physical contact
information, but only the onion address of the Tor network. Thus even if the attacker gets
access to the common secret of a pair of clients, it will not be able to extract physical contact
information.

Second, an attacker could attempt to discard, modify, or delay insertion and retrieval requests of

16 8 POSSIBLE THREATS

clients. The IM service takes arrangements to guarantee a certain degree of robustness against
such attacks. A client that inserts contact information in the DHT has to store several entries
with different hash keys. These hash keys are generated by alternating the index value. The
fact that the information is physically stored on different nodes of the DHT assures that the
information can only be discarded, modified, or delayed completely by a cooperation of evil
Chord nodes This is certainly more difficult than infiltrating a single Chord node. Attacks on
the retrieval of contact information have to be performed analogously.

8.2 Attacks From Outside the IM Service

As shown above, attacks from inside the IM service are not easy to perform. The other possibilty
is to attack the system from outside, e.g. by eavesdropping traffic analysis. Since, in this context
an attacker does not impersonate one of the roles, all attacks are performed on the physical
system layer.

Favesdropping: An attacker has several points for eavesdropping. More precisely, it can eaves-
drop on the communication between clients, between clients and Chord nodes between Chord
nodes. Physical communication between two clients and between a client and a Chord node
always involves the Tor anonymization network. Hence, an attacker is not able to extract infor-
mation of the originator or the receiver of an intercepted message packet. Encryption prevents
the attacker from gaining information from message contents.

Concerning the communication between Chord nodes, eavesdropping is nearly worthless for an
attacker. That is, the communication never contains plain information, but only the hash key
and the signed and encrypted hash value. Anymore, no information about presence of a certain
user is deducible, because the Chord nodes never know about the clients of which they are
currently processing requests.

Additionally, an attacker could intercept the communication between the nodes of the anonymiza-
tion network. This again will not reveal information to the attacker. First, the route through
the Tor network is chosen at random and, hence, the attacker does not know where exactly
to eavesdrop (in particular under the assumption that the interception of the whole traffic is
not feasible for most of the attackers). Second, encryption is used between Tor nodes, i.e. an
attacker will not get information from intercepted data.

Finally, the IM service must be secure against replay attacks. By replaying messages an attacker
could make a client obtain wrong presence states of its contacts. Thus, all messages between
clients include timestamps that have to be checked by receiving client nodes. By replaying
messages intercepted between clients and Chord nodes, an attacker could store wrong contact
information in the DHT. This risk is minimized by employing the dynamic component of the
hash key. After the dynamic component changes, the attacker can only store obsolete entries
that will not be requested any more by clients.

Traffic analysis: Traffic analysis is not easy no perform on the IM service. This is due to
the permanent traffic of the Tor network in which the IM service’s communication vanishes
completely. Though, end-to-end traffic analyses are not impossible, i.e. an attacker observing

17

two interacting clients will gain information about their communication.

9 Conclusion

We implemented an IM system that aims to overcome the shortcomings of existing IM systems
which do not cope with attacks to disclose a user’s presence. In our system presence information
is stored in a distributed registry in a way so that only intended users, not even the registry
itself, can detect or use it. The employed onion routing network ensures that physical adresses
of both, senders and receivers of messages, are never revealed. In summary a concept coping
with previously neglected security issues has been introduced and its feasibility been proven by
a running implementation.

18 REFERENCES

References

[DMS04] Dingledine, R., Mathewson, N., und Syverson, P.: Tor: The Second-Generation
Onion Router. In: Proceedings of the 15th USENIX Security Symposium. S. 303
320. 2004.

[LDGT06] Loesing, K., Dorsch, M., Grote, M., Hildebrandt, K., Roglinger, M., Sehr, M.,
Wilms, C., und Wirtz, G.: Privacy-aware Presence Management in Instant Mes-
saging Systems. In: IEEE International Parallel and Distributed Processing Sym-
posium. 2006.

[PHO5] Pfitzmann, A. und Hansen, M.: Anonymity, Unlinkability, Un-
observability, Pseudonymity, and Identity = Management—A Consoli-
dated Proposal for Terminology. August 2005. http://dud.inf.tu-
dresden.de/literatur/Anon_Terminology_v0.23.pdf.

[SMLN™03] Stoica, I., Morris, R., Liben-Nowell, D., Karger, D. R., Kaashoek, M. F., Dabek,

F., und Balakrishnan, H.: Chord: A scalable peer-to-peer lookup protocol for
internet applications. IEEE/ACM Trans. Netw. 11(1):17-32. 2003.

A List of previous University of Bamberg reports

Bamberger Beitrage zur Wirtschaftsinformatik

Nr

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.
Nr.

Nr.

.1 (1989)

2 (1990)

3 (1990)

4 (1990)

5 (1990)

6 (1991)

7 (1991)

8 (1991)

9 (1992)

10 (1992)

11 (1992)

12 (1992)

13 (1992)

14 (1992)

15 (1992)
16 (1992)

17 (1993)

Stand April 3, 2006

Augsburger W., Bartmann D., Sinz E.J.: Das Bamberger Modell: Der Diplom-Stu-
diengang Wirtschaftsinformatik an der Universitdt Bamberg (Nachdruck Dez.
1990)

Esswein W.: Definition, Implementierung und Einsatz einer kompatiblen Daten-
bankschnittstelle fir PROLOG

Augsburger W., Rieder H., Schwab J.: Endbenutzerorientierte Informationsgewin-
nung aus numerischen Daten am Beispiel von Unternehmenskennzahlen

Ferstl O.K., Sinz E.J.: Objektmodellierung betrieblicher Informationsmodelle im
Semantischen Objektmodell (SOM) (Nachdruck Nov. 1990)

Ferstl O.K., Sinz E.J.: Ein Vorgehensmodell zur Objektmodellierung betrieblicher
Informationssysteme im Semantischen Objektmodell (SOM)

Augsburger W., Rieder H., Schwab J.: Systemtheoretische Reprasentation von
Strukturen und Bewertungsfunktionen (ber zeitabhangigen betrieblichen numeri-
schen Daten

Augsburger W., Rieder H., Schwab J.: Wissensbasiertes, inhaltsorientiertes Retrie-
val statistischer Daten mit EISREVU / Ein Verarbeitungsmodell fiir eine modulare
Bewertung von Kennzahlenwerten fir den Endanwender

Schwab J.: Ein computergestitztes Modellierungssystem zur Kennzahlenbewertung

Gross H.-P.: Eine semantiktreue Transformation vom Entity-Relationship-Modell
in das Strukturierte Entity-Relationship-Modell

Sinz E.J.: Datenmodellierung im Strukturierten Entity-Relationship-Modell
(SERM)

Ferstl O.K., Sinz E. J.: Glossar zum Begriffsystem des Semantischen Objektmo-
dells

Sinz E. J., Popp K.M.: Zur Ableitung der Grobstruktur des konzeptuellen Schemas
aus dem Modell der betrieblichen Diskurswelt

Esswein W., Locarek H.: Objektorientierte Programmierung mit dem Objekt-Rol-
lenmodell

Esswein W.: Das Rollenmodell der Organsiation: Die Beriuicksichtigung aufbauor-
ganisatorische Regelungen in Unternehmensmodellen

Schwab H. J.: EISREVU-Modellierungssystem. Benutzerhandbuch

Schwab K.: Die Implementierung eines relationalen DBMS nach dem
Client/Server-Prinzip

Schwab K.: Konzeption, Entwicklung und Implementierung eines computerge-
stlitzten Birovorgangssystems zur Modellierung von Vorgangsklassen und Ab-
wicklung und Uberwachung von Vorgéngen. Dissertation

19

20

Nr.
Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.
Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

18 (1993)
19 (1994)

20 (1994)

21 (1994)

22 (1994)

23 (1994)

24 (1994)

25 (1994)

26 (1995)

27 (1995)

28 (1995)
30 (1995)

31 (1995)

32 (1995)

33 (1995)

34 (1995)

35 (1995)

36 (1996)

A LIST OF PREVIOUS UNIVERSITY OF BAMBERG REPORTS

Ferstl O.K., Sinz E.J.: Der Modellierungsansatz des Semantischen Objektmodells

Ferstl O.K., Sinz E.J., Amberg M., Hagemann U., Malischewski C.: Tool-Based
Business Process Modeling Using the SOM Approach

Ferstl O.K., Sinz E.J.: From Business Process Modeling to the Specification of
Distributed Business Application Systems - An Object-Oriented Approach -. 1%
edition, June 1994

Ferstl O.K., Sinz E.J. : Multi-Layered Development of Business Process Models
and Distributed Business Application Systems - An Object-Oriented Approach -.
2" edition, November 1994

Ferstl O.K., Sinz E.J.: Der Ansatz des Semantischen Objektmodells zur Modellie-
rung von Geschaftsprozessen

Augsburger W., Schwab K.: Using Formalism and Semi-Formal Constructs for
Modeling Information Systems

Ferstl O.K., Hagemann U.: Simulation hierarischer objekt- und transaktionsorien-
tierter Modelle

Sinz E.J.: Das Informationssystem der Universitat als Instrument zur zielgerichteten
Lenkung von Universitatsprozessen

Wittke M., Mekinic, G.: Kooperierende Informationsrdume. Ein Ansatz fir ver-
teilte Fhrungsinformationssysteme

Ferstl O.K., Sinz E.J.: Re-Engineering von Geschaftsprozessen auf der Grundlage
des SOM-Ansatzes

Ferstl, O.K., Mannmeusel, Th.: Dezentrale Produktionslenkung. Erscheint in CIM-
Management 3/1995

Ludwig, H., Schwab, K.: Integrating cooperation systems: an event-based approach

Augsburger W., Ludwig H., Schwab K.: Koordinationsmethoden und -werkzeuge
bei der computergestiitzten kooperativen Arbeit

Ferstl O.K., Mannmeusel T.: Gestaltung industrieller Geschéftsprozesse

Gunzenhduser R., Duske A., Ferstl O.K., Ludwig H., Mekinic G., Rieder H.,
Schwab H.-J., Schwab K., Sinz E.J., Wittke M: Festschrift zum 60. Geburtstag von
Walter Augsburger

Sinz, E.J.: Kann das GeschaftsprozeBmodell der Unternehmung das unterneh-
mensweite Datenschema abldsen?

Sinz E.J.: Anséatze zur fachlichen Modellierung betrieblicher Informationssysteme -
Entwicklung, aktueller Stand und Trends -

Sinz E.J.: Serviceorientierung der Hochschulverwaltung und ihre Unterstiitzung
durch workflow-orientierte Anwendungssysteme

Ferstl O.K., Sinz, E.J., Amberg M.: Stichwdrter zum Fachgebiet Wirtschaftsinfor-
matik. Erscheint in: Broy M., Spaniol O. (Hrsg.): Lexikon Informatik und Kom-
munikationstechnik, 2. Auflage, VDI-Verlag, Disseldorf 1996

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

37 (1996)

38 (1996)

39 (1996)

40 (1997)

41 (1997)

42 (1997)

43 (1997):

44 (1997)

45 (1998)

46 (1998)

47 (1998)

48 (1998)

49 (1998)

Ferstl O.K., Sinz E.J.: Flexible Organizations Through Object-oriented and Trans-
action-oriented Information Systems, July 1996

Ferstl O.K., Schafer R.: Eine Lernumgebung fir die betriebliche Aus- und Weiter-
bildung on demand, Juli 1996

Hazebrouck J.-P.: Einsatzpotentiale von Fuzzy-Logic im Strategischen Manage-
ment dargestellt an Fuzzy-System-Konzepten fiir Portfolio-Ansétze

Sinz E.J.: Architektur betrieblicher Informationssysteme. In: Rechenberg P., Pom-
berger G. (Hrsg.): Handbuch der Informatik, Hanser-Verlag, Miinchen 1997

Sinz E.J.: Analyse und Gestaltung universitarer Geschaftsprozesse und Anwen-
dungssysteme. Angenommen fir: Informatik *97. Informatik als Innovationsmotor.
27. Jahrestagung der Gesellschaft fiir Informatik, Aachen 24.-26.9.1997

Ferstl O.K., Sinz E.J., Hammel C., Schlitt M., Wolf S.: Application Objects —
fachliche Bausteine fur die Entwicklung komponentenbasierter Anwendungssy-
steme. Angenommen fiir. HMD — Theorie und Praxis der Wirtschaftsinformatik.
Schwerpunkheft ComponentWare, 1997

Ferstl O.K., Sinz E.J.: Modeling of Business Systems Using the Semantic Object
Model (SOM) — A Methodological Framework - . Accepted for: P. Bernus, K.
Mertins, and G. Schmidt (ed.): Handbook on Architectures of Information Systems.
International Handbook on Information Systems, edited by Bernus P., Blazewicz
J., Schmidt G., and Shaw M., Volume I, Springer 1997

Ferstl O.K., Sinz E.J.: Modeling of Business Systems Using (SOM), 2™ Edition.
Appears in: P. Bernus, K. Mertins, and G. Schmidt (ed.): Handbook on Architectu-
res of Information Systems. International Handbook on Information Systems, edi-
ted by Bernus P., Blazewicz J., Schmidt G., and Shaw M., Volume |, Springer
1998

Ferstl O.K., Schmitz K.: Zur Nutzung von Hypertextkonzepten in Lernumgebun-
gen. In: Conradi H., Kreutz R., Spitzer K. (Hrsg.): CBT in der Medizin — Metho-
den, Techniken, Anwendungen -. Proceedings zum Workshop in Aachen 6. — 7.
Juni 1997. 1. Auflage Aachen: Verlag der Augustinus Buchhandlung

Ferstl O.K.: Datenkommunikation. In. Schulte Ch. (Hrsg.): Lexikon der Logistik,
Oldenbourg-Verlag, Minchen 1998

Sinz E.J.: ProzelRgestaltung und ProzeRunterstiitzung im Prifungswesen. Erschie-
nen in: Proceedings Workshop ,,Informationssysteme fir das Hochschulmanage-
ment“. Aachen, September 1997

Sinz, E.J.;, Wismans B.: Das ,Elektronische Priifungsamt“. Erscheint in: Wirt-
schaftswissenschaftliches Studium WiSt, 1998

Haase, O., Henrich, A.: A Hybrid Respresentation of Vague Collections for Distri-
buted Object Management Systems. Erscheint in: IEEE Transactions on Know-
ledge and Data Engineering

Henrich, A.: Applying Document Retrieval Techniques in Software Engineering
Environments. In: Proc. International Conference on Database and Expert Systems

21

22

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.
Nr.

Nr.

50 (1999)

51 (1999)

52 (1999)

53 (1999)

54 (1999)

55 (2000)

56 (2000)

57 (2000)

58 (2000)
59 (2001)

60 (2001)

A LIST OF PREVIOUS UNIVERSITY OF BAMBERG REPORTS

Applications. (DEXA 98), Vienna, Austria, Aug. 98, pp. 240-249, Springer, Lec-
ture Notes in Computer Sciences, No. 1460

Henrich, A., Jamin, S.: On the Optimization of Queries containing Regular Path
Expressions. Erscheint in: Proceedings of the Fourth Workshop on Next Genera-
tion Information Technologies and Systems (NGITS’99), Zikhron-Yaakov, Israel,
July, 1999 (Springer, Lecture Notes)

Haase O., Henrich, A.: A Closed Approach to Vague Collections in Partly Inacces-
sible Distributed Databases. Erscheint in: Proceedings of the Third East-European
Conference on Advances in Databases and Information Systems — ADBIS’99, Ma-
ribor, Slovenia, September 1999 (Springer, Lecture Notes in Computer Science)

Sinz E.J., Béhnlein M., Ulbrich-vom Ende A.: Konzeption eines Data Warehouse-
Systems fur Hochschulen. Angenommen fiir: Workshop ,,Unternehmen Hoch-
schule” im Rahmen der 29. Jahrestagung der Gesellschaft fur Informatik, Pader-
born, 6. Oktober 1999

Sinz E.J.: Konstruktion von Informationssystemen. Der Beitrag wurde in geringfi-
gig modifizierter Fassung angenommen fir: Rechenberg P., Pomberger G. (Hrsg.):
Informatik-Handbuch. 2., aktualisierte und erweiterte Auflage, Hanser, Miinchen
1999

Herda N., Janson A., Reif M., Schindler T., Augsburger W.: Entwicklung des In-
tranets SPICE: Erfahrungsbericht einer Praxiskooperation.

Bohnlein M., Ulbrich-vom Ende A.: Grundlagen des Data Warehousing.
Modellierung und Architektur

Freitag B, Sinz E.J., Wismans B.: Die informationstechnische Infrastruktur der
Virtuellen Hochschule Bayern (vhb). Angenommen fiir Workshop "Unternehmen
Hochschule 2000" im Rahmen der Jahrestagung der Gesellschaft f. Informatik,
Berlin 19. - 22. September 2000

Bohnlein M., Ulbrich-vom Ende A.: Developing Data Warehouse Structures from
Business Process Models.

Knobloch B.: Der Data-Mining-Ansatz zur Analyse betriebswirtschaftlicher Daten.

Sinz E.J., Béhnlein M., Plaha M., Ulbrich-vom Ende A.: Architekturkonzept eines
verteilten Data-Warehouse-Systems fiir das Hochschulwesen. Angenommen fur:
WI-IF 2001, Augsburg, 19.-21. September 2001

Sinz E.J., Wismans B.: Anforderungen an die IV-Infrastruktur von Hochschulen.
Angenommen fur: Workshop ,,Unternehmen Hochschule 2001“ im Rahmen der
Jahrestagung der Gesellschaft fur Informatik, Wien 25. — 28. September 2001

Anderung des Titels der Schriftenreihe Bamberger Beitrage zur Wirtschaftsinformatik in Bamberger
Beitrage zur Wirtschaftsinformatik und Angewandten Informatik ab Nr. 61

Bamberger Beitrage zur Wirtschaftsinformatik und Angewandten

Informatik

Nr

Nr

Nr
Nr

Nr

Nr

Nr

.61 (2002)

. 62 (2002)

. 63 (2005)
. 64 (2005)

. 65 (2006)

. 66 (2006)

. 67 (2006)

Goré R., Mendler M., de Paiva V. (Hrsg.): Proceedings of the International
Workshop on Intuitionistic Modal Logic and Applications (IMLA 2002),
Copenhagen, July 2002.

Sinz E.J., Plaha M., Ulbrich-vom Ende A.: Datenschutz und Datensicherheit in
einem landesweiten Data-Warehouse-System fir das Hochschulwesen. Erscheint
in: Beitrdge zur Hochschulforschung, Heft 4-2002, Bayerisches Staatsinstitut fir
Hochschulforschung und Hochschulplanung, Miinchen 2002

Aguado, J., Mendler, M.: Constructive Semantics for Instantaneous Reactions

Ferstl, O.K.: Lebenslanges Lernen und virtuelle Lehre: globale und lokale
Verbesserungspotenziale. Erschienen in: Kerres, Michael; Keil-Slawik, Reinhard
(Hrsg.); Hochschulen im digitalen Zeitalter: Innovationspotenziale und
Strukturwandel, S. 247 — 263; Reihe education quality forum, herausgegeben durch
das Centrum flr eCompetence in Hochschulen NRW, Band 2, Minster/New
York/Minchen/Berlin: Waxmann 2005

Schonberger, Andreas: Modelling and Validating Business Collaborations: A Case
Study on RosettaNet

Markus Dorsch, Martin Grote, Knut Hildebrandt, Maximilian Réglinger, Matthias
Sehr, Christian Wilms, Karsten Loesing, and Guido Wirtz: Concealing Presence
Information in Instant Messaging Systems, April 2006

Marco Fischer, Andreas Griinert, Sebastian Hudert, Stefan Konig, Kira Lenskaya,
Gregor Scheithauer, Sven Kaffille, and Guido Wirtz: Decentralized Reputation
Management for Cooperating Software Agents in Open Multi-Agent Systems,
April 2006

23

	1 Introduction
	2 Requirements
	3 Design Decisions
	3.1 Essential Design Decisions
	3.2 Structure of a Hash Key
	3.3 Structure of a Hash value

	4 System architecture
	4.1 Roles of the IM service
	4.2 Interplay of the roles

	5 Standard Use Cases
	5.1 Preparatory Activities
	5.2 Single Communication Session

	6 Client-to-Chord Protocol
	6.1 Protocol Sequence: Retrieve Contact Information
	6.2 Protocol Sequence: Publish Own Contact Information
	6.3 Protocol Sequence: Time Synchronization

	7 Client-to-Client Protocol
	7.1 Protocol Sequence: Generate Session Key
	7.2 Protocol Sequence: Notify Of Presence Status
	7.3 Protocol Sequence: Send Instant Message
	7.4 Protocol Sequence: Going Offline

	8 Possible Threats
	8.1 Attacks From Inside the IM Service
	8.2 Attacks From Outside the IM Service

	9 Conclusion
	Bibliography
	A List of previous University of Bamberg reports

