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Abstract

Behavioral and experimental literature on financial instability focuses on either sub-

jective price expectations (Learning-to-Forecast experiments) or individual trading (Learning-

to-Optimize experiments). Bao et al. (2017) have shown that subjects have problems

with both tasks. In this paper, I explore these experimental results by investigating a

model in which financial traders individually learn how to use forecasting and/or trading

anchor-and-adjustment heuristics by updating them with Genetic Algorithms.

The model replicates the main outcomes of these two threads of the experimental

finance literature. It shows that both forecasters and traders coordinate on chasing asset

price trends, which in turn causes substantial and self-fulfilling price oscillations, albeit

larger and faster in the case of trading markets. When agents have to learn both tasks,

financial instability becomes more persistent.

JEL codes: C53, C63, C91, D03, D83, D84.

Keywords: Financial Instability, Learning-to-Forecast and Learning-to-Optimize Exper-

iments, Genetic Algorithm Model of Individual Learning.
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1 Introduction

The financial meltdown of 2007 and the resulting Great Recession demonstrated the impor-

tance of studying the causes and effects of financial instability. One famous example is the

S&P500 stock index, which fell from 1565.15 points on 9th October 2007 to 676.53 points on

9th March 2009. Afterwards, the index surged with virtually undisturbed momentum, until

in January 2018 it reached its historically highest level of 2872.87 points. This means that,

within a single decade after the peak of the 2007, S&P500 first lost more than half of its value,

only to roughly quadruple during the recovery, beating the maximum of the first decade of

the 2000s by a factor of 183.5%. NASDAQ and Frankfurt DAX indices followed a similar path

of bust and boom, while many other stock indices (including Shanghai, London, Paris and

Warsaw) experienced similar drops between 2007 and 2009, but recovered in a less spectacular

fashion, to around pre-crisis levels. What makes such enormous price swings possible?

Modern models of asset markets make two assumptions about the behavior of financial

investors. The first assumption relates the available market information with agents’ forecasts

of an asset price. The second assumption relates these forecasts to agents’ trading positions

(or demand schedules). Traditionally, the financial literature has followed Muth (1961) and

embraced the Rational Expectations (RE) hypothesis: forecasting and trading are mutually

model-consistent with each other and with the aggregate asset price mechanism. This is often

used, especially in modern macroeconomics, to justify the Efficient Market Hypothesis: asset

prices are an accurate reflection of their fundamentals (including the individual investors’ risk

attitude). However, it is difficult to imagine that, within a single decade, the fundamentals of

one stock index could drop by half and then quadruple. A simpler explanation of the crisis

is to assume that financial investors, regardless of how smart they are, face constraints on

their cognitive abilities and can commit forecasting and investment mistakes (Barberis and

Thaler, 2003; Shiller, 1981). As a result, markets do not necessarily have to stabilize at their

fundamental level. This leads to the central question of this paper: is financial instability

caused by non-rational expectations, or by agents’ inability to transform expectations into

rational trading positions – or maybe by both?

This question cannot be easily answered by an empirical study, since many relevant finan-

cial variables, in particular fundamental values or investors’ forecasts, are not directly observ-

able. One popular approach to circumventing this issue is to run a laboratory experiment,

where the researcher can directly control the structure and parametrization of the market, and

ask subjects to elicit their beliefs (Hommes, 2011). The literature on financial experiments

can be roughly divided into two main threads: “Learning-to-Forecast” (LtF), which focuses

on the subjects’ expectation formation (Bao et al., 2012; Colasante et al., 2018; Heemeijer

et al., 2009; Hommes et al., 2007; Marimon et al., 1993); and “Learning-to-Optimize”, where

subjects are directly tasked with trading an asset (for a selection of examples from this vast

body of literature, see Breaban and Noussair, 2015; Dufwenberg et al., 2005; Kirchler et al.,

2012; Lei et al., 2001; Noussair and Tucker, 2013; Smith et al., 1988; Weber et al., 2018). These
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two branches of the experimental literature yield similar stylized facts: subjects more often

than not coordinate on speculative bubbles and market crashes (Palan, 2013).1 In experiments

with a constant fundamental price, this behavior can lead to repeated off-fundamental price

oscillations (see Hommes et al., 2005, for an example).

A second experimental pattern is that subjects do not necessarily have to converge to the

rational expectations solution. Nevertheless, they do rely on smart and successful behavioral

rules, which can often be represented as simple anchor-and-adjustment heuristics (Northcraft

and Neale, 1987; Sewell, 2007; Tversky and Kahneman, 1974). Moreover, subjects are smart in

how they choose their heuristics. For the example of LtF experiments, when subjects observe

a price trend, they will try to chase it. In this case, they use the last observed price as an

anchor, which then they adjust by the last observed price difference (Hommes, 2011; Palan,

2013). They furthermore adjust the degree of trend chasing depending on the particular

market dynamics that they experience (Anufriev et al., 2018). Similarly, when asked to trade,

subjects often adjust their previous position in hight of the expected or last observed return

of the asset (Bao et al., 2017).

There is only a scarce number of experimental studies that have tried to combine fore-

casting and trading designs. One notable example is a paper by Nickerson et al. (2007), who

enhanced the LtO design of Smith et al. (1988) by eliciting subjects’ price forecasts. The au-

thors, in line with LtF experiments, found that subjects extrapolated observed price trends.

These results have been further investigated by Bao et al. (2017), who focused directly on the

difference between forecasting and trading experimental designs. The authors used a simple

asset market and asked their subjects to elicit forecasts (LtF treatment, where the market

price depended on the average price forecast), directly trade an asset (LtO treatment, where

the price depended on the average quantity decision), or perform both tasks (Mixed treatment,

where subjects were rewarded for both forecasting and trading efficiency, but the price solely

depended on quantity decisions). Conforming the previous literature, the authors found that

all three treatments led to substantial market instability, but the two trading treatments were

relatively more unstable. Furthermore, the forecasting treatment yielded largely homogeneous

dynamics, whereas the groups in the two trading treatments coordinate on price oscillations

with diversified amplitude and period.

In other words, the results of the experiment by Bao et al. (2017) suggest that people have

problems with both forecasting and optimal trading, but the latter has a more destabilizing

effect on the market. In response, subjects learn to coordinate on anchor-and-adjustment rules

with a more aggressive adjustment factor under trading treatments. In fact, Bao et al. (2017)

showed that only one quarter of their subjects traded consistently with their forecasts under

the Mixed treatment (where both decisions were observed). This result echoes the literature

on experimental game theory, where some papers have demonstrated that subjects do not

have to act consistently with their beliefs (for a number of examples, see Costa-Gomes and

1This also holds for experiments in which rational bubbles are impossible due to the mathematical structure
of the experimental economy; see Heemeijer et al. (2009) for an example.
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Weizsäcker, 2008; Crawford et al., 2013; Duffy and Tavits, 2008; Rutström and Wilcox, 2009).

The most prominent strand of the theoretical literature that tries to explain the experi-

mental evidence is based on the Heuristic Switching Model (henceforth HSM for short; see

Anufriev and Hommes, 2012; Brock and Hommes, 1998). The idea being this model is that

agents rely on simple heuristics, rules of thumb (such as fundamental forecasts, naive and

adaptive expectations, or trend-following rules), and they tend to switch to rules with higher

past forecasting accuracy. Under some circumstances, investors may converge to the funda-

mental price, but often they coordinate on trend-chasing behavior, which leads to persistent

oscillatory, explosive or chaotic dynamics (see Hommes, 2013a, for a literature overview and

examples). The reason is the positive feedback between expectations and trades on the one

hand, and realized prices on the other (Hommes, 2013b). For example, if investors hold opti-

mistic beliefs about the future prices of an asset, they will buy it, which drives its price up. As

a result, investor sentiment is self-fulfilling, and agents can easily coordinate on price trends.

A plethora of experimental and theoretical investigations have shown that this behavioral ap-

proach can explain many financial stylized facts, and outperforms the RE model in empirical

studies, in particular for housing markets (Bolt et al., 2014; Dieci et al., 2018; Kouwenberg

et al., 2010) as well markets as various other financial assets (Boswijk et al., 2007; Dieci and

Westerhoff, 2010, 2012; Frijns et al., 2010; Hommes and Wagener, 2009; LeBaron, 2006, 2012;

Lux, 1995, 2012; Westerhoff and Reitz, 2003). Finally, HSM can be grounded in an explicit

model of individual learning (Anufriev et al., 2018). In particular, the famous model of the

Santa Fe Artificial Stock Market demonstrates that technical trading (akin to trend-chasing

behavior) is a likely outcome of generalized learning dynamics (Arthur, 2018).

To the best of my knowledge, there is no “trading” counterpart to the HSM literature.

In particular, there exists no widely acknowledged model where heterogeneous agents learn

how to trade financial assets with some anchor-and-adjustment heuristics. In practice, the

literature on behavioral finance assumes one of the two extremes: agents trade randomly or

near-randomly (see, for instance, Duffy and Ünver, 2006; Gode and Sunder, 1993); or that

their only cognitive limitation lies in the forecasting problem, but then they trade consistently

with their behavioral expectations, as in HSM and its derivatives (Anufriev et al., 2013a; Bao

et al., 2018).

The goal of this paper is to provide a computational heterogeneous agent model that can

(1) replicate the stylized facts of the LtF and LtO experiments, and in particular the exper-

iment by Bao et al. (2017), (2) explain and interpret the results of that experiment, and (3)

provide a theoretical framework for models in which both forecasting and trading decision-

making are subject to bounded rationality. I will follow the work of Anufriev et al. (2018), who

used a heterogeneous agent model of explicit learning to show that HSM is a good approxi-

mation of subject behavior in a number of LtF experiments. In the model presented in this

paper, agents forecast and/or trade the asset with simple anchor-and-adjustment heuristics.

Forecasters use the first-order heuristic as in Anufriev et al. (2018), while the trading heuristic

is based on the estimated behavior of subjects from the two trading treatments of Bao et al.
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(2017). Agents independently update their anchor-and-adjustment heuristics with the use of

Genetic Algorithms (henceforth GA). This yields endogenous learning dynamics, in which the

willingness of GA agents to chase the market trend forms a self-reinforcing feedback loop with

unstable price dynamics.2

Compared to alternative models of bounded rationality and individual learning, Genetic

Algorithms offer a substantial advantage: they tend to fit well to the speed and dynamics

of learning that we observe in diversified experimental data (Arifovic and Duffy, 2018). One

good reason is that, unlike many competing models, they can be easily adapted to a rich class

of economic environments. The same baseline learning algorithm may be used to describe

agents facing forecasting tasks, quantity decision tasks, strategic interaction problems, or a

mixture of these tasks. For the example of this paper, agents use exactly the same mechanism

to update forecasting and trading heuristics. This represents the degree of versatility of the

actual experimental subjects and market agents well. The Genetic Algorithm model should

be understood as an approximation, rather than an actual representation of our learning, but

it is sufficient to provide us with a good idea of what can be expected from economic agents,

and what the major driving forces of their learning are (Anufriev et al., 2018; Arthur, 2018;

Dawid, 1996).

The GA model presented in this paper allows for a comparison of the behavior of fore-

casters, traders, and forecaster-traders of two levels of sophistication. The paper yields four

important results. First, the model replicates the findings of the two threads of the behavioral

finance literature on the LtF and the LtO experiments. In particular, it is able to reproduce

the behavior of the experimental groups from Bao et al. (2017). It shows that both markets

with forecasters and with traders generate unstable price paths. On the other hand, traders

can coordinate on price oscillations with more varied amplitude and frequency than forecast-

ers, with record bubbles even reaching 350% of the fundamental price, like in the experiment.

In addition, the model replicates the surprising finding by Bao et al. (2017) that subjects may

trade inconsistently with their beliefs.

The second contribution of the paper is that it demonstrates that the insights of the LtF

literature are valid in the context of the LtO setup. When forecasters try to learn how to

forecast the price of an asset and traders how to trade that asset, both are easily pushed

towards chasing market dynamics: price trends in the case of forecasters and asset returns in

the case of traders. Asset markets are positive feedback systems, where investors’ optimism

and bullish price dynamics reinforce each other – and the GA model demonstrates that this

mechanism operates both through boundedly rational forecasting and trading.

The third contribution is an important lesson about a reinforcement mechanism between

trading and forecasting biases. As explained above, both traders and forecasters learn to

2Genetic Algorithms were initially used in models where agents optimize their final strategy (such as forecast
or quantity) instead of a strategy rule (such as forecasting or quantity heuristics). Important early examples
can be found in Arifovic (1995) and Arifovic (1996), whereas Dawid (1996) and Vriend (2000) discussed the
difference between social and individual learning applications of GAs. The rule optimization approach to GAs
was used in Hommes and Lux (2013). See Anufriev et al. (2018) for a comprehensive literature overview.
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chase price dynamics. But if agents are asked to perform both tasks at the same time, the two

corresponding learning processes amplify each other’s trend-chasing bias through the positive

feedback nature of asset markets. These agents are therefore even more likely to shy away

from rational expectations and trading consistently with their beliefs. Instead, they become

over-reactive and can coordinate on “super-bubbles”, which cause prices to oscillate between

10% and 350% of the fundamental price. In other words, when agents have to learn both to

forecast and to trade, the positive feedback of the asset market is magnified.

The paper furthermore explores a model with both forecasters and traders, which leads

to its fourth contribution. When sufficient number of traders enters the market, a tipping

point occurs in which agents switch to heuristics that extrapolate market dynamics in a more

aggressive fashion, thus generating larger price oscillations. In sum, the GA model presented

in this paper shows that, due the positive feedback of the asset market, when agents try to

learn trading and forecasting at the same time – which is what investors in empirical financial

markets have to do – they are likely to be pushed far from the rational solution, possibly

further than was previously presumed in the literature on behavioral finance.

This is an important warning for policy-makers. As mentioned in the first paragraph,

important stock indices have recently experienced enormous swings, such as the S&P500

index, which collapsed by half and then quadrupled between 2008 and 2018. The consensus

in the behavioral finance literature is that such shifts can be explained by learning dynamics,

even if the underlying fundamentals are relatively stable. The contribution of this paper is to

corroborate this insight, and to show that behavioral models can predict the actual order of

magnitude and the persistence of the stocks’ boom and bust cycle.

The paper is organized as follows. Section 2 presents the asset market and the details of

experimental results of Bao et al. (2017). Section 3 discusses the model: what the forecasting

and trading heuristics of agents are, and how they use Genetic Algorithms to learn. Section 4

shows the baseline results of the model for the case when either all agents are forecasters, or

all agents are traders; and how these markets relate to the experimental results. Section 5

examines the link between market dynamics and the learning of GA forecasters and traders

more deeply. Section 6 briefly investigates model dynamics when the market contains both

forecasters and traders. The concluding section summarizes the results and the paper’s contri-

bution. Appendices provide technical details on the timing of the model, Genetic Algorithms,

and model initialization.
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2 The asset market

2.1 The experimental economy

Consider a set of I = 6 myopic investors,3 who trade on a period to period basis. At period

t,the preferences of agent i are given by the mean-variance utility function of the form

(1) Ui,t = zi,tρt −
a

2
z2i,t,

where zi,t denotes the position of agent i at period t (note that short positions with zi,t < 0 are

possible), a = 6 denotes the risk aversion factor of the agent, z2i,t corresponds to the perceived

risk of the agent’s position, and finally

(2) ρt ≡ pt + y −Rpt−1

is the economic return of the asset, given the realized price pt at period t, a fixed dividend

y = 3.3 and a gross interest rate R = 1 + r = 1.05. For simplicity, suppose that agents face

no additional liquidity constraints. The problem of agent i is that she needs to decide on

zi,t before pt is actually realized. Denote her forecast of pt as pei,t, then the optimal demand

conditional on this belief is given by

(3) z∗i,t ≡ (1/6)ρei,t ≡
pei,t + 3.3− 1.05pt−1

6
.

Once all agents have submitted their individual demands, the market maker adjusts the

price according to the aggregate demand with the price adjustment rule

(4) pt = pt−1 + λ
∑
i

zi,t + εt,

where λ = 1/R = 20/21 is a scaling factor, and εt ∼ NID(0, 1) is a small price shock. If agents

trade consistently with their price expectations, then under experimental parametrization,

price equation (4) reduces to

(5) pt = pf +
20

21

(
p̄et − pf

)
+ εt,

where pf = y/r = 66 is the fundamental price, and p̄et ≡ (1/6)
∑

i p
e
i,t is agents’ average

forecast.

Straightforward derivations prove that pf is the unique fixed point of the expected price

equation (5), and hence the unique stationary RE steady state. Furthermore, because the cur-

rent price pt depends only on its own forecast through a simple linear equation, one can easily

3The parametrization of the economy is taken directly from the design of Bao et al. (2017) in order to have
a natural empirical benchmark for the model simulations.
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see that the fundamental price pf is in fact the unique RE solution, while rational bubbles are

excluded from this setup. This implies that the model only yields any real dynamics if agents

fail to form perfectly rational expectations or to trade consistently with their expectations.

2.2 Experimental design and results

Bao et al. (2017) studied three treatments: Learning to Forecast (LtF), Learning to Optimize

(LtO) and Mixed, each with eight groups with six subjects per group (one subject associated

with one computer trader). In all three treatments, subjects were told that their task was to

be a forecasting and/or trading advisor to a pension fund. They were only given a qualitative

description of the price mechanism, and could only observe the aggregate market outcomes

(past prices) and their individual decisions and payoffs, but not the other subjects’ decisions

or payoffs. They were also unaware of the number of market participants, meaning that they

behaved as price-takers. Each experimental market lasted for T = 50 periods.

Under the LtF treatment, each subject played the role of a financial advisor to a comput-

erized investor, who, in turn, used the subject’s forecast to compute its optimal demand (3).

In practice, subjects were asked to elicit price forecasts pei,t, and their average forecast p̄et was

substituted directly into the law of motion (5).4 Subjects observed the realized price pt and

were paid according to the squared error of their forecasts.

Under the LtO and Mixed treatments, subjects directly played the role of traders of the

pension fund. They were provided with the mathematical formula for utility function (1).

They were also given a calculator that computed the expected asset return for any price

forecast, given the price in the previous period, as well as a table that related the expected

asset return and trading position to the investors’ utility. Subjects were tasked with submitting

their trades zi,t, which were substituted into the price adjustment equation (4).5 Subjects

observed the realized price and utility, and moved to the next period. In the LtO treatment,

they were paid based on the realized utility of their trades (1).

Under the Mixed treatment, subjects were also explicitly asked to provide their price

forecasts pei,t. These forecasts had no bearing on the market price. However, by the end of

the experiment, the experimenters randomly chose (separately for each session) whether to

pay subjects based solely on their forecasting accuracy, or solely on their trading efficiency, so

that subjects had an incentive to perform both task as well as possible.

Utility function (1) is a square function of the forecasting error (see Bao et al., 2017,

for discussion), and therefore under perfect rationality, the three treatments are equivalent

and should lead to exactly the same dynamics; specifically perfectly rational subjects would

immediately jump to the fundamental price. This was not the case in the experiment, however.

Figure 1 shows one sample group per treatment. Under the LtF treatment, all eight groups

4In addition, price forecasts were constrained to remain in the [pt−1 − 30, pt−1 + 30] interval. In practice,
neither subjects nor GA agents hit these boundaries.

5In addition, to keep markets relatively stable, subject trades were constrained to remain in the zi,t ∈
[−5, 5] interval, which roughly corresponds to the forecast constraint under the LtF treatment. Unlike in the
forecasting treatment, these trading boundaries were repeatedly hit by both subjects and GA agents.
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(f) GA LtO OPT F sample

Figure 1: Left panels: sample groups from the experiment by Bao et al. (2017), one group per
treatment. Right panels: sample Genetic Algorithm model simulations (see Section 3 for
a definition of the model variants). The top panels show realized prices and individual
forecasts under the forecasting treatment. The middle and bottom panels show results
from trading treatments, where the upper part of each panel shows realized prices and
individual forecasts (with the exception of c, which reports an experimental LtO group
without elicited forecasts), while the bottom part of each panel shows subject/agent
trades. A thick black line denotes the realized price, a thin dashed black line denotes
the fundamental price pf = 66, dashed green lines denote individual forecasts pei,t, dotted
blue lines denote individual trades zi,t, and the red line with triangles denotes the average
trade.
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exhibited dynamics similar to Group 1, displayed on Figure 1a: subjects quickly coordinated

on similar forecasts, but the market mildly oscillated instead of settling on the fundamental

price.

The dynamics under the LtO and Mixed treatments were statistically indistinguishable,

but also much more varied. Most of the groups oscillated like the two sample LtO and Mixed

groups reported in Figures 1c and 1e respectively, but the specific amplitude and frequency

changed from group to group. The two trading treatments were significantly more unstable

than the LtF treatment. Furthermore, under the Mixed treatment, two groups coordinated on

“super-bubbles” when the price reached approximately 350% of the fundamental price, only

to fall to a level close to 10% of the fundamental (seen on Figure 1e).

This leads us to the three stylized facts of the experiment by Bao et al. (2017) that I want

to address with my model:

S1: Trading leads to more unstable dynamics than forecasting.

S2: Trading groups generate diverse price oscillations (varying period and amplitude).

S3: Exceptionally large oscillations can emerge under trading.

3 The Genetic Algorithm model of individual learning

The agent structure of the Genetic Algorithm (GA) model is based directly on the model of

Anufriev et al. (2018) and on the information and market structure of the experiment by Bao

et al. (2017). Consider a set of I = 6 agents (referred to as GA agents) who are asked either

to forecast, to trade, or to perform both task, in the asset market discussed in Section 2.1.

The agents are unable to immediately form perfectly rational forecasts and trading positions,

and instead they follow simple anchor-and-adjustment heuristics. They learn how to use

these heuristics by updating them with a GA procedure, which constitutes the core learning

mechanism of the model. In this section, I provide an overview of this model. For the sake

of clarity of presentation, many technical details have been shifted to Appendix F. See also

Haupt and Haupt (2004) or Anufriev et al. (2018) for technical discussions on the core GA

procedure, and Dawid (1996) and Arifovic (1995) for sample economic applications.

3.1 Learning to forecast and learning to optimize

3.1.1 Forecasting heuristic

The forecasting heuristic of the GA agents is taken directly from Anufriev et al. (2018).

Suppose that an agent i at period t wants to predict price pt. Her forecast pei,t is based on a

10



simple first-order rule (FOR)

pei,t =αi,tpt−1 + (1− αi,t)p
e
i,t−1 + βi,t(pt−1 − pt−2)

=pet−1 + αi,t(pt−1 − pei,t−1) + βi,t(pt−1 − pt−2),(6)

where pt is the price realized at period t and pei,t−1 is agent’s i forecast for the price at period

t − 1. Coefficients αi,t ∈ [0, 1] and βi,t ∈ [0, 1.1] are the free parameters, and (as will be

explained later) agent i will update them over time with GAs independently from the other

agents.6,7

The top part of equation (6) shows the FOR heuristic as a sum of adaptive expectations

(with weight α) and the trend extrapolation rule (with trend coefficient β). Alternatively,

the bottom part of this equation shows the FOR as a simple anchor-and-adjustment rule: the

price forecast pei,t,h is equal to the previous forecast, but adjusted by the forecasting error (with

scaling factor α) and by the last observed price trend (with adjustment rate β). The FOR

heuristic (6) has important special cases. It becomes a naive forecast when α = 1 and β = 0,

an adaptive forecast when α 6= 0 and β = 0, and a pure trend following rule when α = 1 and

β 6= 0. The RE and fundamental forecasts can be expressed as the FOR rule when α = β = 0

and pei,t−1 = pf , which yields pei,t = pf .

3.2 Three approaches to trading

Under the LtO and Mixed treatments in the experiment by Bao et al. (2017), subjects were

asked to trade the asset, so they utilized a trading anchor-and-adjustment rule. Furthermore,

the experimental instructions explained that subjects should trade based on the expected

return of the asset, as a function of an explicit price forecast. Additionally, under the Mixed

treatment, subjects were directly asked to state their forecasts. It follows that all subjects

from the Mixed treatment, and possibly some from the LtO treatment, tried to forecast the

asset price just as subjects from the LtF treatment did. But what it is not immediately clear

is how subjects linked forecasting with trading – if at all. This leads to three possible trading

strategies (with the descriptions preceded by abbreviations that will be used henceforth):

NON F No forecasting: learn to use a trading heuristic, but disregard price forecasting

altogether for the trading task;

IND F Indirect forecasting: learn to use a trading heuristic with an expected asset return

component, but do not additionally learn how to directly forecast prices;

6For the sake of clarity, I drop the two indices (i, t) from the heuristic’s free parameters in the non-technical
discussion of this paper. The forecasting heuristic for the LtF GA agents is a function of two free parameters
(price and price trend weights), as well as past market variables (realized prices and agent’s forecast). To keep
the notation tractable, I refer to these heuristics as functions of free parameters, or as functions of past market
variables, depending on the context.

7Price weight α is bounded by the [0, 1] interval by definition. The constraint on trend weight β is based
on the GA-S2 specification from Anufriev et al. (2018) and is calibrated to the subjects’ exhibited trend
extrapolation from the experiment by Heemeijer et al. (2009).
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OPT F Optimized forecasting: learn forecasting and trading heuristics separately, and in-

clude the optimized price forecast in the trading heuristic.

The last approach – separating the forecasting and trading tasks – was likely to be the

most “rational” in the experiment. However, it was also the most cognitively demanding.

On the other hand, subjects were not informed about the mathematical specification of the

price equation (4), so they may have found it difficult to forecast the price, or to link it with

optimal trades. In such a case, the first and second approaches may be reasonable “second-

best” alternatives, particularly under the LtO treatment, where forecasting accuracy is not

directly rewarded.

3.2.1 NON F traders

NON F agent i at period t trades based on the following simple AR rule:

(7) zi,t = χi,tzi,t−1 + φi,tρt−1 ∈ [−5, 5],

where zi,t−1 is the agent’s i trade in the previous period, ρt−1 is the realized asset return in the

previous period as in equation (2), and χi,t ∈ [−0.5, 1] and φi,t ∈ [0, 0.3] are the free parameters

that agent i is trying to learn. This heuristic is taken directly from Bao et al. (2017), who

showed that it capably described the behavior of their subjects under the LtO treatment.

The bounds on the two parameters were chosen to cover their experimental distributions.

Furthermore, the heuristic has a simple interpretation as an anchor-and-adjustment rule,

where agent’s i decision is equal to her previous trade zi,t−1 (scaled with factor χ), adjusted

using the last observed asset return (with weight φ).

As explained earlier, under RE every, agent forecasts pei,t = pf = y/(R − 1), and so the

prices becomes pt = pf + εt = y/(R− 1) + εt at every period t. Substituting this into optimal

trade (3), we obtain

(8) zRE
i,t,h =

pei,t + y −Rpt−1
6

=
R

6
εt−1 ∼ N

(
0, R2/36

)
.

Under RE, agent’s i expected trade is thus equal to zero, while realized trades are small noise

terms. Hence, the AR trading heuristic approximates the RE solution with χ = φ = 0.

3.2.2 IND F traders

IND F agent i at period t trades based on a richer AR rule, which can be expressed as

(9) zi,t = χi,tzi,t−1 + φi,tρt−1 + ζi,tρ
e
i,t ∈ [−5, 5],

where χi,t ∈ [−0.5, 1], φi,t ∈ [0, 0.3] and ζi,t ∈ [0, 0.3] are free parameters, and

(10) ρei,t = pei,t + y −Rpt−1
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is the expected asset return based on price expectation pei,t, which agent i (like the GA agents

in the LtF environment) builds with the FOR heuristic (6). Putting this together yields

zi,t =χi,tzi,t−1 + φi,tρt−1

+ ζi,t
(
αi,tpt−1 + (1− αi,t)p

e
t−1 + β(pt−1 − pt−2) + y −Rpt−1

)
.(11)

This heuristic, together with its parametrization, is based on the distribution of the estimated

individual rules under the Mixed treatment from the experiment by Bao et al. (2017). Remark

that, even though these agents use the FOR forecasting rule, they do not conceive it as a

separate heuristic, and instead treat all of the equation (11) as a singular heuristic that they

optimize with GAs.

Heuristic (11) is an anchor-and-adjustment rule, where previous trade zi,t−1 plays the role

of the anchor. Unlike NON F traders, however, IND F traders have a more sophisticated

adjustment mechanism, with both a backward-looking component (the previous asset return

weighted ny φ) and a forward-looking component (the expected asset return weighted by ζ).

Thus, these agents are more flexible, and have a more straightforward way to converge to

the rational solution. Just like in the case of the LtF agents, α = β = 0 and pei,t−1 = pf

together yield the RE forecast. Conditional on the rational forecast, optimal demand (3) can

be expressed with trading heuristic (9) when χ = φ = 0 and ζ = 1/6.

3.2.3 OPT F traders

OPT F agent i first forecasts next price pt using forecasting heuristic (6), like LtF agents.

She uses them to generate an asset return forecast ρei,t as in equation (10). Next, she trades

according to a trading rule expressed as

zi,t =χi,tzi,t−1 + φi,tρt−1 + ζi,tρ
e
i,t(12)

=χi,tzi,t−1 + φi,tρt−1 + ζi,t
(
pei,t + y −Rpt−1

)
.

Note that the trading heuristic (12) is similar to heuristic (9) of IND F traders. In

particular, it has the same anchor-and-adjustment interpretation, as well as the RE special

case. However, OPT F traders perceive their task as a two-dimensional problem, and learn

separately how to use the forecasting rule (6) and the trading rule (12).

3.3 Genetic Algorithm

The premise of the model is that agents learn how to use different anchor-and-adjustment

heuristics via the popular Genetic Algorithm (GA) optimization procedure. GAs are a class

of numerical stochastic optimization algorithms, which are inspired by the evolutionary mech-

anism by which the genome of living organisms adapts to the ever-changing environment

through procreation and mutation. GAs tend to outperform traditional algorithms when

dealing with highly non-linear and multidimensional optimization problems, as well as with
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problems with non-real arguments (such as binary or integer arguments); they are popular in

engineering and related fields (Haupt and Haupt, 2004).

Suppose that you want to maximize a function V (θ) of some argument set θ. In my

model, V is the forecasting or trading success of a heuristic based on its parameters. The

standard binary GA algorithm operates as an evolutionary search mechanism upon the grid

of arguments θ in the following way. Initially, a population of H arguments (denoted as

chromosomes) is created at random, where each argument is encoded with binary strings of 0s

and 1s.8 Then, at every iteration, the arguments undergo the following set of four operators:

Procreation: A set of H child (new) chromosomes is sampled from the set of parent (old)

chromosomes (with replacement), where the probability associated with a parent chro-

mosome is a monotonically increasing transformation (e.g., logistic map) of its value

V (·) relative to value V (·) of other chromosomes (i.e., relative fitness).

Crossover: The child chromosomes are divided into pairs, and each pair will exchange a

predetermined subset of bits with probability δC . Typically, this means exchanging

subsets of arguments.

Mutation: With probability δM , every bit in every argument is swapped (1s into 0s, and vice

versa).

Election: The value V (·) of every child is computed. If the child argument has a higher value

than its parent, it replaces the parent; otherwise the parent is retained in the population,

and the child disappears (see Arifovic, 1995, 1996).

The procedure runs for a predetermined number of iterations, or until a certain convergence

criterion is met.

The procreation operator functions as the evolutionary mechanism, with which the better

arguments slowly replace the worse ones. The two evolutionary operators – crossover and

mutation – allow for experimentation of the argument value. Finally, the election operator

(introduced by Arifovic, 1995) screens off experimentation that leads to poorer fit. Further-

more, these operators can be reinterpreted as a learning mechanism: agents focus on more

successful strategies, experiment with their parameters, and discard unsuccessful “mutants”

(see Arifovic and Duffy, 2018, for a dicussion).

This is precisely the way in which the agents in my model use GAs to learn. Before the

market starts operating, every GA agent is endowed with H = 20 forecasting heuristics (6),

or H = 20 trading heuristics (7) or (9), depending on her type. The exception is OPT F

agents, who each have H = 20 forecasting heuristics (6) and K = 20 trading heuristics (12).

At the beginning of every period afterwards, when they observe the new realized price, GA

8GAs can operate on both floating and binary argument encoding. In this paper, the binary specification
was chosen for two reasons. First, my model is directly based on Anufriev et al. (2018) and Hommes and
Lux (2013). Second, binary representation allows for a more flexible set of arguments, and for a more efficient
mutation operator. See also Anufriev et al. (2018) for a discussion.
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agents use one iteration of GAs to update the free parameters of their heuristics, which are

represented by binary strings with 20 bits per parameter.9

3.4 Sequence of events on the market

There are four baseline variants of the model, one with forecasters and three with traders, but

they all have the same timing. In the first variant, denoted as LtF, GA agents are repeatedly

asked to forecast the price, and their forecasts pei,t are used to generate the next price via the

expectation-price feedback mechanism (5). These agents use the FOR heuristic (6). In the

three trading variants of the model, denoted as LtO, GA agents are repeatedly asked to specify

their trading positions zi,t, which are used to generate the next price via the price adjustment

mechanism (4). In this section, I investigate three versions of the LtO variant: where all GA

agents are (i) homogeneously NON F traders, (ii) homogeneously IND F traders and (iii)

homogeneously OPT F traders. Regardless of the variant of the model, the market operates

for t ∈ {1, . . . , 50} periods as in the experiment.

At the beginning of period t = 1, both experimental subjects and the GA agents know

no history of the market, and their initial decisions are therefore random. Following Anufriev

et al. (2018), I take the initial forecasts pei,1 and/or trades zi,1 of GA agents as exogenous,

sampled from a distribution calibrated to the empirical distribution of the initial forecasts

and trades from Bao et al. (2017).10

Starting from period t > 2, GA agents observe the previous price pt−1, and can use their

heuristics. Following Anufriev et al. (2018), agents have so little information at the beginning

of the session that, at period t = 2, that they will simply sample initial heuristics at random,

so they can start with a good spread of potential strategies. In particular, they generate their

heuristics from a uniform distribution, i.e. every bit in every heuristic of every agent becomes

one or zero with an equal probability of 0.5.11

Once the agents have their heuristics initialized, the market at every period t > 2 operates

in the following way:

1. GA agents observe the realized market price from the previous period pt−1, and compute

the relevant auxiliary variables such as ρt−1 for the trading agents.

2. If t > 3, every GA agent i updates her heuristics independently from the other agents

with one iteration of GA operators (procreation, mutation, crossover, election), where

9The full parametrization of the GAs can be found in Appendix A. I took it directly from Anufriev et al.
(2018), who use Monte Carlo simulations to show it to be robust to reasonable changes of the parameters.

10As in the experimental design of Bao et al. (2017), the initial price in LtO markets is set to p0 = 42
(approximately 64% of the fundamental price).

11Forecasting heuristic (6) also requires the initial price trend, and it is assumed, following Anufriev et al.
(2018), that agents observe ∆p1 = p1 − p0 = 0. On the other hand, in the LtO variant of the model, agents
are assumed to observe the first realized asset return ρ1 = ρ(p1, p0), so that they can use it in their trading
heuristics. Auxiliary simulations show that, in fact, this detail of the model initialization plays no role, and if
we set the initial observed asset return to ρ1 = 0 (which roughly corresponds to ∆p1 = 0), the Monte Carlo
distribution of the LtO variant remains qualitatively intact. This is because the typical initial asset return is
close to zero anyway, whereas GA agents use random asset return weight φ.
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the value function for GAs is the logit transformation of the relevant hypothetical past

performance function V (·):

� Forecasting heuristic (6) for LtF and LtO OPT F GA agents: hypothetical

forecasting squared error in the previous period

(13) V = −
(
pt−1 − pei,t−1(·)

)2
,

where pei,t−1(·) is a function of weights α and β.

� Trading heuristics for the appropriate LtO GA agents: hypothetical trading

efficiency in the previous period

V = − (ρt−1/6− zi,t−1(·))2 =
(
z∗t−1 − zi,t−1(·)

)2
,

where zi,t−1(·) is a function of weights as defined in equations (7), (9) and (12) for

the three types of traders, respectively.

3. Each GA agent i samples one relevant heuristic from the list of updated rules, and uses

it to generate her decision(s): forecast and/or trade. The sampling weights are exactly

as in the reproduction step, namely logit transformation of the relevant hypothetical

performance criterion V (·).

4. The market maker collects GA agents’ decisions, and uses them to generate the next

price pt: based on individual price forecasts pei,t and price mechanism (5) in the LtF

variant of the model, and based on individual trading positions zi,t and price adjustment

mechanism (4) in the LtO variant of the model. Note that LtO IND F and OPT F

GA traders’ forecasts do not directly influence the market maker.

5. Once the new price pt has been established, the algorithm goes back to its first step,

and a new period t+ 1 starts.

The market operates according to this algorithm for a pre-specified number of T = 50 periods,

as in the experiment by Bao et al. (2017).

As explained above, GA agents do not have sufficient information to use their heuristics

in period t = 1, so they are unable to compute the hypothetical performance of these rules for

that period as well. Thus, in period t = 2, they skip point 2 of the model timing (no heuristic

update), and in point 3 (forecast and/or trade heuristic choice), they sample one heuristic

with equal weights 1/20.

It is worth emphasizing that the heuristic of IND F GA agents contains a price forecast –

but these agents optimize that heuristic as one object, exclusively on the merit of its trading

efficiency, and disregarding the efficiency of the forecast. In contrast, each LtO OPT F agent

has two sets of heuristics: H = 20 forecasting rules (6) and K = 20 trading rules (12). She
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updates and samples them separately, which means that she divides her task into two semi-

independent parts: how to forecast efficiently, and how to trade conditional on the already

fine-tuned forecast.

3.5 Simulation setup

The GA model is highly non-linear and allows for no analytical solution. Instead, I focus on

a simple Monte Carlo (MC) exercise with which I will study the dynamics of the model in

the experimental setting of Bao et al. (2017). Two issues are worth mentioning at this point.

First, the goal of this paper is to shed light on the learning that took place in the experiment,

so I do not study the long-run behavior of the model. Instead, I focus on 50-period-long

simulations as was the length of the experimental sessions, using the experimental data as a

natural benchmark for the model results.

Second, it would be interesting to compute a measure of how well the model fits the

experimental data. One example of such a measure is the one-period ahead mean squared

prediction error of the model as in Anufriev et al. (2018), who showed that the GA model

outperformed other forecasting models in explaining the LtF experiments. This is possible,

since there exists a well-established body of behavioral literature on expectation formation,

including the Heuristic Switching Model, which offers a natural benchmark for the LtF GA

model. To the best of my knowledge, there exists no directly corresponding behavioral model

of how people learn to trade financial assets, in spite of the vast body of empirical and

experimental literature of what the trading biases of investors are. Therefore, computing a

fitness measure for the presented model would yield little additional insight. I focus instead

on the stylized facts from the experiment by Bao et al. (2017).

There are four variants of GA agents: one LtF and three LtO. In Section 4, I consider

homogeneous markets with only one type of GA agents. Section 6 presents the results for

heterogeneous markets with a mixture of LtF and OPT F GA agents. For each model

specification, I ran 1000 independent simulations. Each simulation was based on different

initial conditions (initial forecasts and/or trades, and initial heuristics), as well as different

pseudo-random numbers for the learning process.12,13

12Supply shocks εt in price equations (5) and (4) are constant across the simulations and taken from the
experiment. GA agents use heuristics with a different number of parameters in the four model specifications.
It is therefore impossible to use the same set of pseudo-random numbers for each MC study.

13The executable has been written in C++ in MSVS IDE and compiled in the Windows 10 64-bit operational
system. The source code and executable are available on demand.
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Figure 2: Sample price paths for the GA model. The thick black line depicts the realized price, the
straight thin line shows the fundamental price pf = 66.

4 Results for homogeneous markets

4.1 Market (in)stability

Figure 2 shows sample simulations of the four specifications of the GA model.14 These sample

paths are representative of the MC simulations of realized prices, as seen in Figure 3. In all

four cases, the market does not truly converge to the RE solution; however, the three trading

specifications (Figures 3b–3d) lead to substantially more pronounced price oscillations, but

also to much wider 95% Confidence Intervals (CI). This result replicates the first stylized fact

S1 from the experiment by Bao et al. (2017).

All three LtO specifications tended to generate surprisingly regular dynamics.15 This is

visible in the similar shape of the median and the upper and lower parts of the price distribution

for each model variant. These markets often brought about one or two large bubbles within

50 periods. During the first bubble, the upper bounds of the 95% CI of all three models

was around pt = 250, which is close to 380% of the fundamental price pf = 66. The bubble

was followed by a significant market crash, where the median price dropped to around half

(IND F GA agents) or one-third (the other two LtO model variants) of the fundamental,

while many simulations hit the zero price bound. This in turn was followed by a renewed price

increase, closing a self-sustaining cycle of booms and busts, as observed in the experiment.

14The sample simulations are simply the first simulation in each Monte Carlo run. Three of these, for the
LtF, and LtO IND F and OPT F markets, are also presented in Figure 1.

15This regularity is caused by two factors: the markets use relatively similar initial forecasts and trades; and
they use the same price equation disturbances εt.
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Figure 3: 50-period-ahead MC simulation (1000 markets) for the four specifications of the GA
model: evolution of the asset price. The thick red line is the median and the dotted blue
lines represent the 95% confidence interval for the GA model.

There were also two visible differences between the three LtO model specifications, as

the shape of the 95% CI makes clear. First, IND F markets tend to have faster oscillations.

Second, OPT F GA agents coordinate on bubbles having the largest amplitude, while IND F

agents – the smallest. Furthermore, all three LtO model variants generate wide 95% CIs,

implying large “within-variant” heterogeneity. It follows that different LtO markets can

generate oscillations with different dynamic properties, replicating the second stylized fact S2

of the experiment by Bao et al. (2017).

The most unstable markets are generated by the LtO OPT F model, in which GA agents

include the expected asset return in their trading heuristic, and their price forecast heuristic

is directly optimized. The median market generates two bubbles (Figure 3d), where the first

peaks at around 234 (approximately 350% of the fundamental price pf = 66), and the second

at 187 (close to 300% of pf ). This median behavior closely resembles the two “super-bubbles”

from the experiment by Bao et al. (2017), not only in terms of magnitude, but also in terms

of the surprising regularity. Hence, the model replicates the third stylized fact S3 of the

experiment.

Result 1. The 50-period-ahead simulations of the GA model replicate all three stylized facts

from the experiment by Bao et al. (2017) and confirm the findings of both the Learning-to-

Forecast and Learning-to-Optimize experimental literature.
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4.2 Individual learning

What is the link between the observed market dynamics and the realized individual learning

in the GA model? As expected, this depends on the specification of the model, but large

heterogeneity prevails even within each specification.

4.2.1 Forecasting heuristics

In line with the existing literature on the LtF setting, one important mechanism behind price

oscillations is trend-chasing behavior. Figure 4 shows the Monte Carlo evolution of the two

parameters from forecasting heuristic (6), price weight α and trend extrapolation coefficient β,

for the three versions of the model where agents forecast the price directly (LtF and OPT F)

and indirectly (IND F). In the LtF model specification, the median agent learns to chase the

price trend with a forecasting rule approximately equal to

pei,t = αpt−1 + (1− α)pei,t−1 + β(pt−1 − pt−2)

≈ 0.87pt−1 + 0.13pei,t−1 + 0.75(pt−1 − pt−2),(14)

though the median trend coefficient β oscillates to some degree, taking values between 0.6

and 0.9. Nevertheless, the 95% CIs remain wide for both coefficients, indicating significant

heterogeneity between particular markets.16 This outcome replicates the central result by

Anufriev et al. (2018), and offers a clear interpretation. The asset market features positive

feedback, since price mechanism (5) leads to almost self-fulfilling predictions (with a near unit

root coefficient of 20/21 ≈ 0.952). If GA agents experiment with trend-following heuristics

while observing a price increase, they predict higher prices in the future. This drives the asset

demand, and thus the realized price itself, up. GA agents therefore are further encouraged to

extrapolate price trends, which closes the self-reinforcing feedback of investor optimism and

pessimism.

LtO GA agents from the OPT F specification, who use an independently optimized price

forecast in their trading heuristic, converge to a similar behavior. In particular, the median

agent learns forecasting heuristic

(15) pei,t ≈ 0.92pt−1 + 0.08pei,t−1 + 0.95(pt−1 − pt−2),

which, in comparison with the LtF heuristic, has a higher trend coefficient β (0.95 instead

of 0.75). As we will see later in this section, these GA agents learn to put positive weight

on the expected asset return in their trading heuristic. It follows that we observe the same

mechanism as in the LtF case; however, trading amplifies the feedback and hence results in

even stronger trend chasing.

In both model specifications, the trend-chasing behavior is only lightly anchored in GA

16Note that the 95% CIs for many heuristic coefficients are highly asymmetric. I therefore refrain from using
the standard deviation statistic, and focus solely on the shape of the confidence intervals.
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Figure 4: 50-period-ahead MC simulation (1000 markets) for the LtF, IND F and OPT F spec-
ifications of the GA model: evolution of forecasting heuristics parameters, price weight
α (left panels) and trend extrapolation weight β (right panels). The thick red line is the
median and the dotted blue lines show the 95% confidence interval for the GA model.

agents’ past forecasts (with weight 1 − α ≈ 0.1 for the median agent in both specifications).

Agents start with a flexible anchor-and-adjustment heuristic, but learn to disregard the anchor,

and instead focus on aggressive adjustment strategies.

In contrast to the two previous model specifications, LtO GA agents in the IND F model,

i.e. agents who use the expected asset return in their trading heuristic, but do not directly

optimize the price forecast, follow the price trends to a visibly smaller degree. The median

GA agent learns here to use

(16) pei,t ≈ 0.58pt−1 + 0.42pei,t−1 + 0.42(pt−1 − pt−2),

which is a heuristic that adjusts the anchor relatively conservatively. The simplest interpre-
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tation is that GA agents find it difficult to come up with a good price forecasting heuristic

in the initial periods (they are unable optimize it directly, after all), therefore they are more

likely to keep experimenting with lower β, which reinforces smaller oscillations and thus also

the success of milder trend following.

4.3 Trading heuristics

The asset market becomes even more unstable when GA agents try to learn how to directly

trade. Figure 5 shows the MC evolution of the parameters of trading heuristics for the three

LtO model specifications. Unlike for the case of forecasting, the median learning pattern here

is not always clear-cut, and large heterogeneity prevails.

The median NON F GA agent converges gradually to trading heuristic

zi,t = χzi,t−1 + φρt−1

≈ −0.19zi,t−1 + 0.175ρt−1.(17)

The anchor element χ in this heuristic comes with a negative sign, so these GA agents learn

some degree of mean-reversion behavior. On the other hand, the high coefficient on the past

asset return φ = 0.175 (recall that under RE, the coefficient on the expected asset return

should be 1/6 ≈ 0.167) means that these GA agents overemphasize the adjustment element of

their heuristics and learn to strongly follow market dynamics. In particular, if the asset price

rises (falls) sufficiently, the asset return becomes positive (negative). The median NON F

agent increases (decreases) her position by more than the RE factor, which feeds back into the

price growth (drop). This further inclines GA agents to chase the asset return. On the other

hand, the mean-reverting χ < 0 and the lack of a forward-looking component in the trading

heuristic imply that, if the market loses some of its momentum, GA agents can reverse their

position, and then follow it at a slower pace. This explains why the first bubble in the MC

simulations (Figure 3b) bursts, and why the second bubble tends to be smaller than the first

one.

The median IND F GA agent converges to a similar heuristic in the form of

(18) zi,t ≈ −0.16zi,t−1 + 0.16ρt−1 + 0.15ρet .

These agents put slightly less emphasis on the previous asset return, but they compensate for it

with additional chasing of the expected asset return ρe. On the other hand, these agents, given

that they are unable to optimize their price heuristic directly, follow the price trends relatively

more conservatively than the other GA agents (as seen in equation (16)). Furthermore, the

coefficient of the expected asset return is smaller than under RE, with median ζi ≈ 0.15 < 1/6.

This explains why, on the one hand, oscillations in IND F markets do not lose momentum as

in the case of the NON F GA model variant, but, on the other hand, are overall the smallest

among the trading variants of the model.
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Figure 5: 50-period-ahead MC simulation (1000 markets) for LtF, IND F and OPT F specifica-
tions of the GA model: evolution of trading heuristics parameters, previous trade weight χ
(left panels), past asset return weight φ (middle panels) and expected asset return weight
ζ (right panels). The thick red line is the median and the dotted blue lines represent the
95% confidence interval for the GA model.

Finally, OPT F GA agents follow a similar pattern to the other two types of trading GA

agents. The median agent in this model specification converges to a heuristic in the form of

zi,t = χzi,t−1 + φρt−1 + ζρet

≈ −0.28zi,t−1 + 0.14ρt−1 + 0.11ρet .(19)

In comparison with the NON F model specification, the median GA agent chooses an even

more negative weight on the anchor (with χ ≈ −0.28 < −0.19), and a slightly lower coefficient

on the past asset return, which is offset by the additional positive weight on the expected asset

return (which NON F GA agents do not use). Even though these agents use smaller φ and ζ

than IND F GA agents, they also have a much stronger trend-following price heuristic (15).

The total effect makes the market in this model specification strikingly unstable.

The two median GA agents in the IND F and the OPT F model specifications learn the ζ

coefficient on the expected return, which is similar to the rational solution, but not exactly on

the spot. Another deviation from the RE is that both of these agents choose non-zero weights

on the previous trade and asset return. This result is a striking example of how learning and

limitations on cognitive abilities can lead to suboptimal behavior in the case of even the most

primitive aspects of our decision making, and how it forms a self-reinforcing feedback system
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with market dynamics. In fact, Bao et al. (2017) found that only one quarter of their subjects

under the Mixed treatment used the optimal trading rule (3). The GA model confirms this

to be a robust outcome of learning, instead of an anomaly. In the next section, I provide an

interpretation of this result (see Result 3).

4.4 Between and within treatment heterogeneity

The median behavior of each type of GA agents explains general price patterns, which we

observe in the simulations of the four variants of the GA model. However, it is important to

note that, regardless of the model specification, the 95% CIs of both forecasting and trading

parameters remain wide (and so do the CIs of prices). This means that even if GA agents

in a particular variant of the model tend to move towards certain behavior in general, large

heterogeneity between particular simulations will persist. Some simulated markets can greatly

deviate from the dominant type of dynamics, as GA agents, by chance, coordinate on less

usual – but still sustainable – feedback between heuristics and price equation.17 The model

heterogeneity explains why the experimental groups generated clear patterns between the

treatments, but could still remain highly varied within each treatment. This is particularly

clear for LtO markets, as seen in the MC price dynamics (Figure 3), and provides further

insight into the stylized fact S2.

5 A comparison of individual learning between homo-

geneous model specifications

What drives the differences among the four model variants? Recall that, in each specification,

GA agents use different heuristics based on a different parameter space. Therefore, in order

to compare the median behavior of GA agents, it is useful to focus on a generalized version

of their forecasting and trading heuristics given by

(20) zi,t = c0y + c1zi,t−1 + c2ρ
e
i,t−1 + c3∆pt−1 + c4pt−1.

This simple linear rule, just like its special cases, is an example of an anchor-and-adjustment

heuristic. Every GA agent i considers two anchor terms, dividend y and her previous trading

position zi,t−1. She then adjusts these by extrapolating the last observed price trend ∆pt−1 =

pt−1 − pt−2. At first glance, the previous expected asset return ρei,t−1 serves as an anchor,

since a positive c2 relates the agent’s present trade to her past beliefs. However, these are

beliefs about market trends, which is more akin to an adjustment term, and I thus follow this

interpretation. Finally, the last observed price level pt−1 is an additional anchor term, but in

17Appendix B shows the MC results for forecasting and trading coordination of the four variants of the GA
model. Figure B.1 shows that, even though some outliers exist, agents remain well coordinated in median
simulations of both the LtF and all three variants of the LtO models. This obviously requires that in the
majority of markets, GA agents in particular use similar (albeit not necessarily exactly the same) heuristics.
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practice its weight is relatively small, with c4 ≈ 0, and hence can be thought of as a residual

term (see Bao et al., 2017).

The five cl coefficients of generalized heuristic (20) are directly related to the coefficients of

forecasting heuristic (6) of LtF GA agents, and the three trading heuristics (7), (9) and (12)

of LtO GA agents (see Appendix D for derivation). In practice, GA agents in the four model

specifications learn to use this rule differently, which explains the discrepancies in the asset

price dynamics across the simulations. Table 1 shows the results for the median GA agents

from four model specifications.

Heuristic arguments

Dividend Trade Exp. return Price trend Price
y zi,t−1 ρei,t−1 ∆pt−1 pt−1

GA Model: LtF specification

LtF 0.145 0 0.021 0.102 −0.007

GA Model: LtO specifications

NON F 0.175 −0.19 0 0.184 −0.088
IND F 0.247 −0.16 0.063 0.165 −0.012
OPT F 0.241 −0.28 0.088 0.242 −0.012

Table 1: Coefficients of generalized trading heuristic (20) learned by median GA agents under four
different model variants.

There is a clear relationship between the stability of the model specification and the learned

behavior, in terms of both the anchor and the adjustment elements of GA agents’ heuristics.

We can see in Table 1 that the more unstable the specification is (from the most stable

LtF, through LtO IND F and NON F, to the most unstable OPT F), the higher the two

adjustment rates associated with asset return forecast and price trend are. In particular, LtF

GA agents put a weight of around 0.1 on the previous price trend, while the three types of

LtO agents use a weight between 1.5 and 2.5 times larger. This is the reason why the trading

markets are visibly more unstable, and why they can lead to “super-bubbles”.

A second important observation is that GA agents learn more conservative anchoring

scheme in the more stable markets. In particular, LtO GA agents, in comparison with their

more stable LtF counterparts, use a negative coefficient on their previous trade, where the

order of relative price instability coincides with the absolute value of this coefficient. In

other words, the more unstable the environment, the more strongly GA agents learn a mean-

reverting behavior. Finally, LtO GA agents (in particular, IND F and OPT F agents) learn

to put higher weight on dividend y. For the example of the OPT F median agent, the impact

of the dividend on her trade is given by 0.241y ≈ 0.8 (where trades are confined into the

zi,t ∈ [−5, 5] interval). This means that, holding all other factors constant, these agents have

relatively higher positive bias in their typical demand than LtF agents, and are therefore more

likely to push the market away from relatively stable price paths.
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The theoretical and experimental literature on the LtF environment demonstrates that

people use simple anchor-and-adjustment forecasting heuristics, and that feedback exists be-

tween the market environment and the type of heuristics that are learned by agents. For the

particular example of positive feedback economies (such as asset markets), people learn to

follow price trends, which leads to self-fulfilling price oscillations. My GA model shows that,

when agents are asked to directly learn how to trade an asset, the learning dynamics pushes

them towards the same type of behavior, despite differences in task and framing. In other

words, the LtO environment results in agents who are “as-if” price-trend chasing, just like

under the LtF regime. If we furthermore ask agents to do both, these two learning patterns

amplify each other, resulting in even more extreme or complicated price dynamics.

Result 2. The GA model confirms the insights of the Learning-to-Forecast literature, and

shows that they can be generalized to trading behavior: in asset markets, positive feedback

between agent decisions and prices inclines agents to learn to chase price trends.

Why does trading lead to less stable prices and more trend chasing, as seen in Table 1?

The simplest interpretation is based on the Rational Expectations solution to trading and

forecasting problems. As explained in the previous sections, both the trading and forecasting

heuristics of GA agents have a special “as-if” RE case. However, these have a significantly

different structure. Under the LtF model specification, GA agents should disregard the ad-

justment part of their heuristic (the price trend), and rely solely on the anchor equal to the

fundamental price, that is set α = β = 0 and find pei,t = pf . In other words, perfectly rational

agents under this scenario are trying to learn a constant.

Trading agents are faced with the opposite task. Recall that price equation (4) contains

small shocks. As a result, the rational demand is on average equal to zero, but its realized

value changes from period to period, as seen in equation (8). This implies that traders have

to learn two things. First, they need to converge to the fundamental forecast (or whatever

the rational forecast is in a more general setting). On the top of that, they need to learn

how to react to this forecast. Since their trading heuristic is a linear function of the expected

asset return, they need to learn the optimal slope of that function (in this model, equal to

ζ∗ = 1/6).

One can imagine that estimating a slope can be more tricky than estimating a constant

when the available sample is neither exogenous nor rich. For the particular case of asset

markets, they are feedback systems where the previous market conditions (i.e. the sample

available to the agents) depends endogenously on agents’ behavior (i.e. on what they have

previously learned, see Anufriev et al., 2013b, for a discussion and an example in the setting

of Industrial Organization). What complicates the learning even more in the context of asset

markets is that their feedback is positive, and so renders biases to be self-fulfilling.

Suppose that in some LtF market, agents learned to disregard price trends and converged

to the neighborhood of the fundamental forecast. In terms of FOR heuristic (6), they un-

derstand that α = β = 0 is the rational rule, but they still need to learn the value of pf . If
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they keep on experimenting with the forecast level, trying to learn the exact rational solution,

the average forecast will most likely alternate around and very close to the fundamental. To

formalize this experimentation, suppose that every agent i forecasts pei,t = pf + ei,t, where

ei,t ∼ NID(0, v2) is a normally distributed error with some small variance v2. Thus, price pt

becomes normally distributed as

pt =pf +
20

21

(∑6
i=1 p

e
i,t

6
− pf

)
+ εt = pf +

10

63

6∑
i=1

ei,t + εt.(21)

This is a positive feedback system, because when the average forecast overshoots the fun-

damental, the realized price will be also above the fundamental. However, price pt remains

independent from its previous value pt−1 on the merit of the price equation itself. As a result,

agents have to actively pursue price trends for prices to become serially correlated; and if they

do not pursue such trends, the average observed price remains a consistent estimator of the

fundamental pf .

The LtO market is very different. There, agents have to learn to forecast the fundamental

price, as well as to figure out the optimal slope in their trading heuristic. Consider a market

in which OPT F GA agents experiment with their forecast as LtF agents in the previous

example, and furthermore still need to learn the exact weight on the expected asset return.

Formally, they use χ = φ = 0, pei,t = pf + ei,t and ζi = 1/6 + êi,t, where êi,t ∼ NID(0, v̂2) is a

small random error. Then

pt =pt−1 +
20

21

∑
i=1

6ζi
(
pf + ei,t + y −Rpt−1

)
+ εt

=pf +
20

21

(
pf + y −Rpt−1

)∑
i=1

6êi,t +
6∑

i=6

ei,têi,t + εt.(22)

The second term pf + y−Rpt−1 is proportional to the deviation from the fundamental of the

price from the previous period t − 1. Unlike in the LtF case, random learning mistakes êi,t

make the current price pt dependent on the previous price pt−1. For example, suppose that

the initial price is below the fundamental, with p1 < pf (as typically happens in experimental

sessions), which implies that the term pf + y−Rp1 is positive. If the average agent overreacts

(underreacts) such that
∑6

i=1 êi,t > 0 (
∑6

i=1 êi,t < 0), then the next realized price p2 is likely

to be higher (lower) than the fundamental, just like in the LtF case. In this case, however,

the deviation of price p2 from the fundamental level scales up with the previous deviation of

p1 from the fundamental. Note that this holds even when agents have managed to learn the

fundamental price itself (with ei,t = 0). In other words, experimentation with ζ causes the

price mechanism itself to amplify this additional volatility, and makes learning much more

difficult. If so, agents have even more incentive to abandon the fundamental solution and try

to learn some other behavior in comparison with the LtF model specification.

In the LtF setting, it is easy to coordinate on price trend chasing due to the positive
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feedback of the market (Hommes, 2013b). This effect becomes stronger under the LtO setting.

To see this, consider again the OPT F model specification. Suppose that the typical GA agent

observes a positive price trend, and extrapolates it, with p̄et > pt−1. Assume that she does not

care about the previous asset return (with φ = 0), but is over-reactive with ζ > 1/6. As seen

in equations (3) and (4), the price grows faster than under rational trading (with ζ̄ = 1/6),

and yields an even higher realized asset return ρt (2), which in turn legitimizes the GA agents’

overreaction.

Overreaction, however, does not need to be the sole cause of positive feedback. OPT F

GA agents can compensate for lower weight on the expected asset return ζ with positive

weight on the previous asset return, with φ > 0, since the realized asset return will remain

positive as long as prices continue to grow sufficiently fast. As we saw in the previous section,

these GA agents learn to put high weights on both parameters in their trading heuristic

(19), together with a strong trend-chasing weight in their forecasting heuristic (15). And if

they use such weights, the price again grows even faster than under optimal trading from

the LtF specification, which in turn justifies higher asset return extrapolation on the top of

strong price trend extrapolation. A similar phenomenon occurs for a persistent negative trend:

agents switch to short positions that are more aggressive than under rational trading, causing

the market to plummet even faster, thus justifying their aggressive betting on price decline.

Note that the same reasoning holds for the two other types of LtO GA agents.

Either case of ζ > 1/6 or φ+ ζ > 1/6 brings about amplified or enhanced positive feedback,

where extrapolations of (i) the price trend and (ii) the asset return (last observed or expected)

fuel large price oscillations, which in turn fuel aggressive chasing of price trends and asset

returns. Since GA agents tend to start far from the fundamental, they are likely to get locked

into this regime, and coordinate on highly oscillatory price paths. This explains why LtO

model specifications tend to generate more unstable price dynamics. In particular, OPT F

GA agents learn both price trend-chasing and overreactive extrapolation of expected and

previous asset returns, resulting in a series of “super-bubbles” (see Arthur, 2018).

Result 3. If investors are asked directly to trade, they face “enhanced” positive feedback.

If agents extrapolate positive (negative) price trends, but also put a relatively high weight on

the previous or expected asset return, they buy (sell) even more of the asset. This makes

the price grow (decline) relatively fast, which justifies the behavior of the agents: price-trend

seeking and overreactive trading. As a result, traders can generate higher price oscillations

than forecasters, who react only to price trends, but not to the dynamics of the asset return.

6 A mixed market with forecasters and traders

One advantage of an agent-based model is that it allows researchers to study interesting

counterfactual scenarios. In this section, I focus on the following question: what happens in

a market where some GA agents play the role of LtF forecasters and where their trading

positions are consistent with forecasts, while the other LtO agents have to learn how to
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perform both tasks? As discussed previously, LtF markets tend to be visibly more stable than

LtO markets. What amount of traders is necessary to further destabilize the off-equilibrium

dynamics of pure forecasters’ markets and generate “super-bubbles”?

To study this issue, I focus on markets where J ∈ {0, . . . , 6} agents are OPT F LtO GA

traders and the remaining J−6 are LtF GA forecasters. I refer to this model as MIX J. Given

that all the three LtO markets tend to qualitatively generate the same behavior, it is sufficient

to focus on only one type of trader to get insights into the mixed market. Furthermore, OPT F

traders optimize their forecasting heuristic the same way LtF GA agents do, so this model

choice allows for the direct identification of the effect that bounded rationality in trading has

on the market on top of behavioral forecasting.

The MIX J model has almost the same structure as the OPT F one. In every period t,

agents observe the realized price from the previous period pt−1 and update their forecasting

heuristics (6) with one GA update based on the relative performance of these heuristics, in

order to generate their next forecast pei,t (regardless of the type of agent).

Next, LtF agents compute optimal demand schedules according to zLtFi,t = (pei,t + y −
Rpt−1)/6 as in equation (3). On the other hand, OPT F traders optimize their trading

heuristics (12) with one GA update, based on their relative performance. These agents then

sample one trading heuristic and use it to compute their individual demand schedules zOPT
i,t ,

just like in the baseline OPT F model.

The price is next determined by

pt =pt−1 +
20

21

6∑
i=1

zi,t + εt = pt−1 +
20

21

J∑
i=1

zOPT
i,t +

20

21

6∑
i=J+1

zLtFi,t + εt.

GA agents observe pt, and the market moves to the next period t+ 1. In the simulations, this

process repeats itself for T = 50 periods. Note that when J = 6 (J = 0), the model defaults

to the homogeneous OPT F (LtF) variant.

Detailed MC results for every MIX J model variant can be found in Appendix C. For

the sake of simplicity, we focus on the characteristics of the first bubble. Recall that, as seen

in Figure 3d, OPT F simulations tended to generate two large bubbles, and the peak of the

first one happens during period t = 14 (measured by the first peak of the median price and

its upper 95% CI). Therefore, the snapshot of the price distribution during period t = 14,

that is the median price p14 and its 95% CI bounds, serves as a natural measure of relative

instability. Figure 6 reports these statistics for all possible values of J .

The clear pattern is that, as J goes up, that is as the number of traders rises, the median

price and the upper 95% CI bound both increase. On the other hand, the lower bound of

the 95% CI initially goes up as well, but it starts to fall for J = 5 and J = 6. This implies

that the more traders relative to forecasters there are, the higher the possible asset bubbles

are. However, once traders start to dominate the set of GA agents, markets become more

heterogeneous. Typical markets significantly oscillate; however, large outliers (both “super-

bubbles” and surprisingly stable or bearish prices) also become more likely.
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Figure 6: MIX J model for J ∈ {0, . . . , 6} LtF and 6 − J LtO OPT F GA agents. Median
price p14 (red circles) and upper and lower bounds of its 95% Confidence Intervals (blue
squares) in period t = 14 as a function of J .

Heuristic arguments

Dividend Trade Exp. return Price trend Price
y zi,t−1 ρei,t−1 ∆pt−1 pt−1

LtF (J=0) 0.152 0 0.0147 0.129 −0.008
J=1 0.142 0 0.0245 0.128 −0.007
J=2 0.145 0 0.022 0.127 −0.007
J=3 0.147 0 0.0198 0.127 −0.007
J=4 0.149 0 0.0127 0.136 −0.007
J=5 0.16 −0.067 0.01 0.153 −0.008
LtO OPT F (J=6) 0.184 −0.137 0.01 0.183 −0.009

Table 2: MIX J model for J ∈ {0, . . . , 6} LtF and 6− J LtO OPT F GA agents. Coefficients of
the generalized trading heuristic (20) learned by median GA agent.

This corresponds well with the learned behavior. Appendix C provides snapshots of the

learned median coefficients of the forecasting and trading heuristics and their 95% CI during

period t = 14. One can easily compute generalized heuristic (20), which median GA agent

exhibited during period t = 14 in each of the MIX J models. These results are reported in

Table 2.

Consider first the MIX J model variants with fewer than J = 4 traders. The weights

on the previous trade and price trend are similar here, and equal 0 and . 0.13 respectively.

However, for a positive J , the weight on the previous expected asset return is visibly higher,

which causes less stable market dynamics and a higher median bubble during period t = 14.

The median heuristic undergoes a structural change once the number of LtO OPT F GA

traders exceeds the threshold of J > 4. The weight on the previous expected asset return drops

by a factor of half, whereas the median agent starts to put more emphasis on the observed

price trend ∆pt−1, and eventually adopts a mean-reverting heuristic with the previous trade
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weight dropping from χ = 0 to negative χ ≈ −0.1.

This result can be interpreted as a tipping point. In Section 5 we saw that LtO GA agents,

who have to learn how to trade conditional on their forecasts, eventually trade more aggres-

sively than under rational trading, to which LtF agents are constrained. It is obvious that

these traders can impose their overconfidence on a market only if they are abundant enough,

which is approximately half of the market in the GA model. On the other hand, traders can

coordinate on more heterogeneous price paths, hence if they dominate over forecasters, some

of the markets will become relatively stable or bearish, even if the typical dynamics are by

and large bullish. The existence of the tipping point in the learned behavior demonstrates that

our simple linear one-period ahead asset market becomes a complex system under individual

learning.

Result 4. In a mixed market with both GA traders and forecasters, there exists a tipping

point where, if the number of traders is sufficiently high, price oscillations become more het-

erogeneous and have a higher possible amplitude.

7 Conclusions

Taming financial instability remains one of the most important policy tasks after the Great

Recession of 2008. Literature on behavioral finance has demonstrated that the Efficient Market

Hypothesis does not have to necessarily hold, and instead, asset markets can generate off-

equilibrium cycles of booms and busts. This is confirmed by experimental evidence, which

shows that laboratory subjects often coordinate on non-rational price bubbles. The reason is

the positive feedback character of asset markets : if agents are optimistic about asset’s future

profitability, they invest more in that asset, which in turn increases its price. This results in

self-reinforcing dynamics between unstable market dynamics and financial agents learning to

chase price trends.

The stylized findings of the experimental literature, however, are still subject to one puzzle:

what exactly causes the off-equilibrium learning dynamics of subjects? Are financial markets

unstable because agents fail to learn to forecast asset prices in a rational fashion, or because

they fail to translate their forecasts into optimal trading strategies – or maybe both? The

literature on this topic is scarce, but existing studies suggest that, in fact, subjects find both

tasks difficult (Bao et al., 2017; Nickerson et al., 2007).

In this paper, I studied a heterogeneous agent model based on Anufriev et al. (2018), in

which agents were asked to forecast the price of an asset, trade it, or both, in the setting of the

Bao et al. (2017) experimental economy. Agents did not know the rational solution to that

market, and instead relied on simple anchor-and-adjustment heuristics in the spirit of Tversky

and Kahneman (1974). These general heuristics required specific parametrization, and agents

individually learned one by updating their rules with Genetic Algorithms. Forecasting agents

utilized a general adaptive expectation rule with an additional price trend extrapolation com-

ponent. Three types of traders were assumed. The first type used a heuristic in which the
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previous position was adjusted by the last observed asset return. The second and third types

added to this the expected asset return; the second type learned only how to use that trading

rule, whereas the third type also directly optimized her forecasting heuristic.

The analysis of the model yielded three important contributions. First, the model replicates

the stylized results of the Learning-to-Forecast and Learning-to-Trade financial experiments,

in particular the experiment by Bao et al. (2017). All types of agents learned to chase price

trends, which resulted in significant price oscillations. However, the trading agents could

coordinate on more diversified oscillations, including “super-bubbles”, in which the price re-

peatedly shifted between 10% and 350% of the fundamental price (as in the most extreme

groups in the experiment by Bao et al. (2017)). Second, the paper offers a unified framework

for the Learning-to-Forecast and Learning-to-Optimize strands of the behavioral literature,

and demonstrates that the insights of the former are also relevant for the latter. The posi-

tive feedback aspect of asset markets pushes both forecasters and traders towards symmetric

behavior, where they learn to extrapolate price instability as a response to the phenomenon

itself, thus reinforcing it. Third, the paper demonstrates that the trend-chasing biases of

forecasters and traders amplify each other. When agents had to perform both tasks, market

dynamics became particularly unstable, and agents adopted even higher degrees of overreac-

tion, in comparison to the case of markets with only forecasters or only traders. Simulations

suggested that this tipping point occurs when at least half of agents are traders. These results

directly contradict the assumptions of the literature based on Muth (1961) by demonstrating

that asset price oscillations are a robust outcome of individual learning for realistic financial

markets.
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A GA parametrization

Parameter Notation Value

Number of agents I 6
Number of heuristics of one type per
agent

H 20

Number of bits per parameter Lg 20

Mutation rate δm 0.01
Crossover rate δc 0.9

Forecasting heuristic

Allowed α, price weight [αL, αH ] [0, 1]
Allowed β, trend extrapolation
coefficient

[βL, βH ] [0, 1.1]

Lower crossover cutoff point CL 20
Higher crossover cutoff point CH −1 (none)
Performance measure U(·) exp(−SE(·))

Trading heuristic – all LtO variants

Allowed χ, trade weight [χL, χH ] [−0.5, 1]
Allowed φ, asset return weight [φL, φH ] [0, 0.3]
Performance measure U(·) exp(−(zi,t−1 − z∗t−1)2)

Trading heuristic – NON F

Lower crossover cutoff point CL 20
Higher crossover cutoff point CH −1 (none)

Trading heuristic – IND F and OPT F

Allowed ζ, expected asset weight [ζL, ζH ] [0, 0.3]
Lower crossover cutoff point CL 20
Higher crossover cutoff point CH 41

Table A.1: Values of parameters used by GA agents.
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B Coordination of GA agents

Figure B.1 shows coordination of GA agents in the each of the four variants of the model.

The forecasting coordination is measured as the standard deviation of the six forecasts of GA

agents in a given market, in a given period, namely as

SD(pet ) =

√√√√1

6

6∑
i=1

(
pei,t − p̄et

)2
,

where p̄et = 1/6
∑6

i=1 p
e
i,t is the average forecast in that period. Trading coordination is

measured by an analogous standard deviation of the six individual trades

SD(zt) =

√√√√1

6

6∑
i=1

(zi,t − z̄t)2,

where z̄t = 1/6
∑6

i=1 zi,t is the average trade in that period.
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Figure B.1: 50-period-ahead MC simulation (1000 markets) for LtF, NON F, IND F and
OPT F specifications of the GA model: evolution of forecasting coordination (left
panels) and trading coordination (right panels). The thick red line is the median and
the dotted blue lines represent the 95% confidence intervals for the GA model.
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C Monte Carlo results for MIX J models
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Figure C.1: MIX J model for J ∈ {0, . . . , 6} LtF and 6 − J LtO OPT F GA agents. Learned
coefficients of forecasting and trading heuristics, price weight α, trend extrapolation
weight β, previous trade weight χ, past asset return weight φ and expected asset return
weight ζ, during period t = 14 as a function of J . Median values are denoted by red
circles; upper and lower bounds of their 95% CIs by blue squares.
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Figure C.2: 50-period-ahead MC simulation (1000 markets) for the MIX 1 specification of the GA
model: evolution of realized prices with forecasting and trading heuristics parameters,
price weight α, trend extrapolation weight β (right panels), previous trade weight χ,
past asset return weight φ and expected asset return weight ζ. The thick red line is
the median and the dotted blue lines represent the 95% CI for the GA model.
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Figure C.3: 50-period-ahead MC simulation (1000 markets) for the MIX 2 specification of the GA
model: evolution of realized prices with forecasting and trading heuristics parameters,
price weight α, trend extrapolation weight β (right panels), previous trade weight χ,
past asset return weight φ and expected asset return weight ζ. The thick red line is
the median and the dotted blue lines represent the 95% CI for the GA model.
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Figure C.4: 50-period-ahead MC simulation (1000 markets) for the MIX 3 specification of the GA
model: evolution of realized prices with forecasting and trading heuristics parameters,
price weight α, trend extrapolation weight β (right panels), previous trade weight χ,
past asset return weight φ and expected asset return weight ζ. The thick red line is
the median and the dotted blue lines represent the 95% CI for the GA model.
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Figure C.5: 50-period-ahead MC simulation (1000 markets) for the MIX 4 specification of the GA
model: evolution of realized prices with forecasting and trading heuristics parameters,
price weight α, trend extrapolation weight β (right panels), previous trade weight χ,
past asset return weight φ and expected asset return weight ζ. The thick red line is
the median and the dotted blue lines represent the 95% CI for the GA model.
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Figure C.6: 50-period-ahead MC simulation (1000 markets) for the MIX 5 specification of the GA
model: evolution of realized prices with forecasting and trading heuristics parameters,
price weight α, trend extrapolation weight β (right panels), previous trade weight χ,
past asset return weight φ and expected asset return weight ζ. The thick red line is
the median and the dotted blue lines represent the 95% CI for the GA model.
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D Generalized anchor-and-adjustment trading/forecasting

heuristic

The goal of this appendix is to show that the three trading heuristics of trading GA agents, as

well as the trade based on forecasting heuristic (6) of forecasting GA agents, can be represented

as a trading rule in the form

(D.1) zi,t = c0y + c1zi,t−1 + c2ρ
e
i,t−1 + c3pt−1 + c4(pt−1 − pt−2).

LtF agents only forecast the price, which is substituted into optimal demand (3). Hence,

forecasting heuristic (6) corresponds to the following trading rule:

zFi,t =(1/6)
(
pei,t + y −Rpt−1

)
=(1/6)

(
αpt−1 + (1− α)pei,t−1 + β(pt−1 − pt−2) + y −Rpt−1

)
=

1− α
6

(
pei,t−1 + y −Rpt−2

)
+

1

6
((α + β −R)pt−1 + (R(1− α)− β)pt−2 + αy)

=
1− α

6
ρei,t−1 +

α

6
y +

α(1−R)

6
pt−1 +

β − (1− α)R

6
∆pt−1.(D.2)

Note that since LtF GA agents always trade optimally conditional on their asset return

forecast, an alternative representation of (D.2) can be given by

(D.3) zFi,t = (1− α)zi,t−1 +
α

6
y +

α(1−R)

6
pt−1 +

β − (1− α)R

6
∆pt−1.

Hence, median forecasting heuristic (14) translates into

(D.4) zFi,t ≈ 0.145y + 0.13zi,t−1 − 0.00725pt−1 + 0.10225∆pt−1.

NON F traders adjust their previous trading position in light of the observed asset return,

and so heuristic (7) can be rewritten as

zTN
i,t =χzi,t−1 + φρt−1

=χzi,t−1 + φ (pt−1 + y −Rpt−2)

=φy + χzi,t−1 + (1−R)φpt−1 +Rφ∆pt−1.(D.5)

Thus median heuristic (17) yields

zTN
i,t ≈ 0.175y − 0.19zi,t−1 − 0.0875pt−1 + 0.18375∆pt−2.(D.6)

IND F and OPT F GA traders adjust their previous position in light of both previous

and expected returns (though they learn the expected return in a different way). Thus, using

pei,t = αpt−1 +(1−α)pei,t−1 +β(pt−1−pt−2), one can show that heuristics (9) and (12) can both
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be represented as

zTF
i,t =χzi,t−1 + φρt−1 + ζρet

=χzi,t−1 + φ (pt−1 + y −Rpt−2) + ζ
(
pei,t + y −Rpt−1

)
=χzi,t−1 + (φ+ ζα + ζβ − ζR)pt−1 − (φR + ζβ)pt−2 + ζ(1− α)pet−1 + (φ+ ζ)y

=χzi,t−1 + ζ(1− α)
(
pei,t−1 + y −Rpt−2

)
+ (φ+ ζα + ζβ − ζR)pt−1

− (φR + ζβ − ζ(1− α)R)pt−2 + (φ+ ζ − ζ(1− α))y

=(φ+ αζ)y + χzi,t−1 + ζ(1− α)ρei,t−1 + (1−R)(φ+ αζ)pt−1

+ (φR + βζ − (1− α)Rζ)∆pt−1.(D.7)

It follows that median trading rule (18) of IND F GA agents can be represented as

(D.8) zTI
i,t = 0.247y − 0.16zi,t−1 + 0.063ρei,t−1 − 0.01235pt−1 + 0.16485∆pt−1,

while median trading rule (19) of OPT F GA agents can be rewritten as

(D.9) zTO
i,t = 0.2412y − 0.28zi,t−1 + 0.088ρei,t−1 − 0.01206pt−1 + 0.24226∆pt−1.

E Initial forecasts and trades

In the experiment by Bao et al. (2017), subjects were given limited information about what

to expect in the first period of their session. Under the LtF and Mixed treatments, they

were informed that their first forecast should lie in the [0, 100] interval. Under the LtO and

Mixed treatment, subjects were instructed that all their trades, including the one in the first

period, were constrained by the [−5, 5] interval. Aside from these constraints, subjects were

not provided with any additional information, such as a historical sample of prices, forecasts

or trades. This implies that their decisions in the first period were – from the perspective of

the modeler – purely random.

On the other hand, Diks and Makarewicz (2013) noticed that in the Learning-to-Forecast

experiment by Heemeijer et al. (2009) (using the same design as the LtF treatment of Bao

et al., 2017), there is actually a structure in subjects’ initial forecasts. Around one-third used

pei,1 = 50, the midpoint of the initially allowed forecasting area and a natural focal point.

Other subjects spread their forecasts more or less uniformly in two uneven intervals, the more

popular [0, 50) (forecasts below the focal point) and the less popular (50, 70] (forecasts above

the focal point). To model this initial distribution, Diks and Makarewicz (2013) suggested

Winged Focal Point distribution (WFP). To be specific, each subject i is assumed to sample
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her or his initial forecast pei,1 according to

(E.1) pei,1 =


ε1i ∼ U

(
w1, w

f
)

with probability p1 ,

wf with probability p2 ,

ε2i ∼ U
(
wf , w2

)
with probability 1− p1 − p2 ,

where wf is a natural focal point (such as 50 in the LtF treatment), 0 6 w1 < wf < w2 6 100

are the limits of “wings” of this distribution, and p1 and p2 are the probabilities that subject i

will sample her forecast from the left wing, or use the focal point, in the first place. Anufriev

et al. (2018) used the estimation technique suggested by Diks and Makarewicz (2013) to

calibrate the sampling distribution of the initial forecasts for their three experiments, and

argued that this calibration would allow for a Monte Carlo study that would more closely

follow the dynamics of the experimental groups.

I used the same modeling solution to initialize my GA model. It was possible to successfully

estimate the WFP distribution for the LtF treatment of the experiment by Bao et al. (2017),

where

(E.2) pei,1 =


ε1i ∼ U (9.375, 50) with probability 0.25989 ,

50 with probability 0.47894 ,

ε2i ∼ U (50, 60.26118) with probability 0.26117 .

On the other hand, subjects under the Mixed treatment did not seem to focus so much on the

focal point and the upper wing, and instead the majority of their forecasts seemed to follow

a uniform distribution

(E.3) pei,1 ∼ U(41.6016, 50).

This is an interesting observation that shows that a number of decisions can drastically alter

the initial behavior (and possibly – the initial level of sophistication) of laboratory subjects.

On the other hand, visual inspection of initial trades suggests that subjects also sampled

these from a WFP distribution, where the focal point was the midpoint of the allowed trades,

namely zi,1 = 0. In this case, the right wing is more pronounced, which is natural, given

that it covers positive trades (which is what subjects may have been primed to expect by

previous experience or general knowledge). Diks and KS tests (see Diks and Makarewicz,

2013) showed that there was no systematic difference between initial trades in the LtO and

Mixed treatments, and that they could be described by WFP distribution in the form

(E.4) zi,1 =


ε1i ∼ U (−3.8826, 0) with probability 0.49513 ,

0 with probability 0.15381 ,

ε2i ∼ U (0, 2.5625) with probability 0.35106 .
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In all the simulations for this paper, the respective distributions were used to sample

initial decisions. In the LtF model variant, GA agents sampled initial forecasts from (E.2).

In all three LtO model variants, GA agents sampled initial forecasts from (E.3) and initial

trades from (E.4). In Mixed-J simulations with non-trivial population heterogeneity (i.e.

when J ∈ {1, . . . , 5}), all trading agents sampled their initial trades from (E.4). For the sake

of simplicity, all 6 GA agents (ie., pure forecasters and forecasters-traders) used the same

(E.3) distribution to sample initial forecasts. It would have been possible to force the pure

forecasters to use the (E.2) distribution instead, but additional sample simulations suggest that

this would have had virtually no effect on the model dynamics. The reason is that the mean,

standard deviation, and actual structure of (E.2) and (E.3) distributions are comparable.

F Technical details regarding the behavior of GA agents

F.1 Heuristics

Every GA agent i ∈ {1, . . . , 6} at period t has H = 20 heuristics indexed by h. The exception

is OPT F traders, who have H = 20 forecasting and K = 20 trading rules. These rules are

defined as

LtF pei,t,h =αi,t,hpt−1 + (1− αi,t,h)pet−1 + βi,t,h(pt−1 − pt−2)

NON F zi,t,h =χi,t,hzi,t−1 + φi,t,hρt−1

IND F zi,t,h =χi,t,hzi,t−1 + φi,t,hρt−1

+ ζi,t,h
(
αi,t,hpt−1 + (1− αi,t,h)pet−1 + β(pt−1 − pt−2) + y −Rpt−1

)
OPT F pei,t,h =αi,t,hpt−1 + (1− αi,t,h)pet−1 + βi,t,h(pt−1 − pt−2) and

zi,t,k =χi,t,kzi,t−1 + φi,t,kρt−1 + ζi,t,k
(
pei,t + y −Rpt−1

)
(F.1)

These rules are additionally constrained by |pei,t,h − pt−1| 6 30 and zi,t,h/k ∈ [−5, 5]. IND F

traders remember their implicit forecasts pei,t,h = αi,t,hpt−1 +(1−αi,t,h)pet−1 +βi,t,h(pt−1−pt−2),
so that they can use them during the next period t+ 1.

Each heuristic is defined as a binary string of 20 bits per heuristic parameter; for example

the heuristics of an IND F are encoded as a string of 100 bits, the first 20 bits associated with

α, the second with β, and so forth. The exception is again OPT F traders, who each have

two subsets of heuristics – the first for the 20 forecasting, and the second for the 20 trading

heuristics.

F.2 Initial two periods

During the first period t = 1, GA agents sampled their decisions from initial exogenous

distribution, as presented in Appendix E. In particular,

� in the LtF variant of the model, each GA agent i sampled one pei,1,
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� in the LtO variant of the model, each GA agent i of type

– NON F sampled one zi,1,

– IND F sampled one pei,1 and one zi,1,

– OPT F sampled one pei,1 and one zi,1.

In the LtF variant of the model, initial forecasts pei,1 were substituted directly into price

equation (5), while in the LtO variant initial trades zi,1 were substituted into price equation

(4), with p0 = 42 as in the experiment (approximately 64% of the fundamental price).

Once p1 was generated, GA agents observed it. In the LtO variant of the model, agents

also learned the first realized asset return ρ1 = ρ(p1, p0 = 42), which they could subsequently

use in their trading heuristics zi,2,h(·). On the other hand, LtF and OPT F agents observed

∆p1 = p1 − p0 = 0 (assuming no initial price trend).

At the beginning of period t = 2, GA agents sampled initial heuristics at random, i.e.

every bit in every heuristic of every agent became one or zero with an equal probability of 0.5.

Next, each agent i sampled one heuristic (with equal weights of 1/H = 0.05) to carry out her

decision. The exception is OPT F agents, who separately sampled one forecasting heuristic

with equal weights and one trading heuristic with equal weights 1/H = 1/K = 0.05.

F.3 Evaluating the heuristics

Starting with period t = 3, each GA agent could evaluate her forecasting and/or trading

heuristics from the previous period. In particular, they could focus on the following criteria

functions V (·), which measured the hypothetical performance of the heuristics in the previous

period:

� LtF GA agent i evaluated each forecasting heuristic h with

(F.2) VF (i, h, t− 1) ≡ VF (pei,t−1,h(αi,t−1,h, βi,t−1,h)) =
(
pei,t−1,h(αi,t−1,h, βi,t−1,h)− pt−1

)2
.

� LtO GA agents:

NON F GA agent i evaluated each trading heuristic h with

VNO(i, t− 1, h) ≡VNO(zi,t−1,h(χi,t−1,h, φi,t−1,h))

=
(
zi,t−1,h(χi,t−1,h, φi,t−1,h)− ρt−1

6

)2
,(F.3)

which shows the squared deviation from the optimal demand at period t − 1 (3)

and is proportional to the realized utility of agent i (1).
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IND F GA agent i evaluated each trading heuristic h with

VIND(i, t− 1, h) ≡VIND(zi,t−1,h(χi,t−1,h, φi,t−1,h, ζi,t−1,h, αi,t−1,h, βi,t−1,h))

=
(
zi,t−1,h(χi,t−1,h, φi,t−1,h, ζi,t−1,h, αi,t−1,h, βi,t−1,h)− ρt−1

6

)2
.(F.4)

OPT F GA agent i evaluated her forecasting and trading heuristics separately; more

specifically, she evaluates each forecasting heuristic h with the squared error mea-

sure (similarly to LtF agents)

V F
OPT (i, t− 1, h) ≡V F

OPT (pei,t−1,h(αi,t−1,h, βi,t−1,h))

=
(
pei,t−1,h(αi,t−1,h, βi,t−1,h)− pt−1

)2
,(F.5)

and each trading heuristic k with

V T
OPT (i, t− 1, k) ≡V T

OPT (zi,t−1,k(χi,t−1,k, φi,t−1,k, ζi,t−1,k))

=
(
zi,t−1,k(χi,t−1,k, φi,t−1,k, ζi,t−1,k)− ρt−1

6

)2
.(F.6)

Note that measures V (·) are computed treating pt−1, ρt−1, p
e
i,t−2 and/or zi,t−2 as constants,

i.e. agents do not evaluate the effect of the change in their forecasts and trades on past prices.

This is a standard assumption of price-taking behavior.

At the beginning of period t, when the information set contains all periods up to and

including t− 1, GA agents use GA operators, and sample independently their heuristics, with

probability weights defined by the logit transformation

(F.7) Πi,t−1,u =
exp−Vi,t−1,u(·)∑
û∈U exp−Vi,t−1,û(·)

∈ [0, 1),

of the relevant criterion function for all heuristics u ∈ U ∈ {H,K}.
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