
Physics Letters A 362 (2007) 407–411

www.elsevier.com/locate/pla

Triggering crashes in chaotic dynamics
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Abstract

We discuss a method to generate “crashes” in chaotic systems at prespecified time points (or to target trajectories to desirable states). The idea
is first to learn typical crash sequences from available time-series and then to implement a single perturbation of the system to force it on a crash
path.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Deterministic chaos is characterized by irregular, aperiodic
motion on a bounded and dense attractor. Chaotic systems ex-
hibit extreme sensitivity to initial conditions, i.e., small pertur-
bations substantially alter the state of the system in the course
of time. Though chaotic dynamics thus appears to be erratic, its
deterministic nature can be used to control chaos towards pe-
riodic motion [1–6], achieve synchronization [7,8] and target
trajectories [9]. While the original idea of chaos control is to
stabilize irregular dynamics, the aim can also be the opposite,
namely to impose a desired behaviour on the chaotic system.

For instance, exploiting the standard chaos control technique
[1], Mehta and Henderson [10] formulated a related chaotic sys-
tem and then forced the orbit on this artificially constructed
system by small parameter perturbations. Pyragas [11,12] in-
troduced a continuous control method in which a chaotic sys-
tem can reproduce previous trajectories through linear coupling
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with a self-generated time series. [13] showed that the driven
signal does not need to be related to the system under study,
and can be a quite general one. Furthermore, chaos control
techniques can also be applied to convert transient chaos into
sustained chaos [14,15]. This kind of chaos maintenance (also
called chaos anticontrol) is of interest in systems exhibiting
deterministic crises and intermittent behaviour [16–18]. In a
biomedical context, for example, the loss of chaos and the on-
set of periodicity may be regarded as pathologic and is often
referred to as a dynamical disease [15].

The problem of targeting trajectories has been addressed for
two main reasons. First, in chaos control algorithms, it can
reduce waiting times considerably. Second, in systems with
coexisting attractors, it can drive the orbit into the basin of at-
traction of a particular attractor that is regarded to be superior.
In fact, many targeting methods have dealt with the distinc-
tion between smooth and fractal basin boundaries, cf. [19] and
references therein. More generally phrasing, targeting of chaos
refers to a process in which perturbations are applied to a dy-
namical system to steer it to (the neighbourhood of) a prespec-
ified state. Actually, the aim of this Letter is to trigger certain
single “events” in a chaotic system, such as crashes or peaks. In
addition, one may also use the method to direct the trajectory to
an unstable steady states for its temporary “stabilization”.
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Most targeting algorithms focus on small perturbations of a
system’s parameter, see for example [20–22]. Pyragas [11] was
probably the first to propose to perturb instead the state vari-
ables of a system. This idea has also been implemented in the
targeting algorithms of [23,24]. Boccaletti et al. [25] presented
a method that does not require a priori information about the
stable and unstable manifolds of the target point. Instead, they
constructed goal dynamics by recording preimages of the target.
The advantage is that in principle only time-series information
is necessary. This can be of importance when the law of mo-
tion is not known as for example in ecological systems [26].
The idea to utilize preimages basically goes back to [15,16] and
[11].

While targeting problems were so far concerned with apply-
ing small perturbations over a longer time-period, there may be
situations in which a single, but possibly larger, intervention is
more appropriate. In fact, observing the system’s state as well
as implementing the perturbation can be costly. Think, for in-
stance, of interventions in population dynamics (e.g., by culling
or enrichment). A one-time field campaign is obviously easier
to realize and less time-consuming than repeated attempts hav-
ing only a small impact each (cf. [27] for a review of recent
experimental large-scale field studies that perturbed ecological
communities by trapping, nest removal [28] and treatment with
anthelminthics [29]). Here we discuss a method that triggers
crashes at prespecified points in time. By a crash we mean that
a dynamic variable drops from a relatively large value below a
certain threshold. For example, it may be advantageous to min-
imize the amount of pest species close to the harvest season.
Similarly, our method is general enough to be used to induce
peaks or to target the trajectory to desirable system states. Imag-
ine, e.g., to improve harvesting yields within a desired time
window.

Our method works as follows. In a first step, we learn which
preimages may lead to a crash (corresponding to our target).
This is done by inspecting time-series information. If potential
crash patterns have been identified, then one can disturb the sys-
tem such that it is put on one of these crash paths. A few time
steps later, a crash will be triggered automatically. The advan-
tages of our method are obvious. Only a single intervention is
needed to reach our target. Thereafter, as a side effect, the sys-
tem dynamics remains unaffected, including the maintenance
of the original chaotic attractor. The implementation is entirely
based on time-series information, i.e. no knowledge of the un-
derlying law of motion is required. The method works well in a
deterministic setting and can also cope with substantial noise.

2. The method

We introduce our approach by exemplifying it through a
prototype one-dimensional nonlinear map. The quadratic map,
which may, for instance, be regarded as a model of density-
dependent growth of a population with nonoverlapping genera-
tions [30,31], can be expressed as

(1)Xt+1 = rXt (1 − Xt),
Fig. 1. The dynamics of the quadratic map with r = 4 and X0 = 0.05 in the
time domain (150 observations).

Fig. 2. A collection of 500 crash paths of the quadratic map with r = 4 derived
from time-series information. A crash is defined as a situation in which Xt

drops below XC = 0.05. The data is organized such that a crash occurs at time
step zero. Six preimages are plotted.

where the parameter r ∈ (0,4] and the initial value X0 ∈ (0,1).
Fig. 1 shows a time series of this map with r = 4 and X0 = 0.05
in the time domain (150 observations). The system fluctuates in
the range (0,1) and repeatedly displays stronger crashes. For
instance, in period 75, the variable decreases from about 0.999
to about 0.001. However, such crashes occur in an unpredictable
way. It may be useful to be able to generate crashes at certain
future points in time.

The first step of our method is to identify a collection of
preimages that lead to a crash. Let us define a crash as a sit-
uation in which the variable drops below the threshold value
XC = 0.05. Fig. 2 presents 500 crash paths which we have
collected from time-series information. A clear “crash pattern”
becomes visible. For instance, it can be observed that a crash
occurs in period “0” when the trajectory of the system is in one
of the following four intervals in period “−4”: [0.033,0.044],
[0.296,0.322], [0.678,0.704] or [0.957,0.967]. If this is in-
deed the case, then the system will be in the next time step either
in the interval [0127,0.167] or [0.833,0.873]. In period “−2”,
the system is located in [0.444,0.556] from where it will jump
into the range [0.987,1]. Finally, the system crashes. As argued
by Yang et al. [15], the widths of these intervals tend to shrink
in the unstable direction, yet the number of branches approx-
imately double every time step. For instance, in period “−6”,
we already observe 16 different branches all leading to a crash.
Note that these branches are scattered widely over the unit in-
terval, so that in period “−6” the system is not far away from
one of the 16 branches.
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Fig. 3. The top panel shows the dynamics of the manipulated quadratic map (2)
and (3) with r = 4. The bottom panel depicts the intervention size Zt . Interven-
tions are executed at time steps 21, 46, 71 and 96, respectively.

The second step of our method consists of an appropriate
intervention strategy. For the sake of expository simplicity, we
implement the intervention strategy four time steps ahead. The
interventions change the law of motion into

(2)Xt+1 = r(Xt + Zt)
(
1 − (Xt + Zt)

)
,

where the (time-dependent) interventions Zt are executed as

(3)Zt =
{

(cmax
j + cmin

j )/2 − Xt for t = t̃ ,

0 otherwise.

The intervention time is denoted by t̃ and the lower and upper
boundaries of the four aforementioned critical intervals are in-
dicated by cmin

j and cmax
j (j = 1, . . . ,4), respectively (see again

Fig. 2). According to this algorithm, we have to intervene only
once in the system by placing the trajectory on the midpoint of
the closest interval branch cj . In principle, we can use any of
the four branches. However, it may be reasonable to minimize
the effort of the intervention.

Fig. 3 depicts a simulation run where we have applied the
method in periods 21, 46, 71 and 96. The top panel reveals that
the system crashes, as planned, four time periods later, namely
in periods 25, 50, 75 and 100. Here, Xt remains below XC for
some time. The bottom panel presents the corresponding inter-
ventions Zt . Note that if we set the trajectory exactly on the
midpoint of a crash branch, we may trigger periodic oscilla-
tions, because we repeat to reset the system always to the same
state. The periodic oscillations, however, immediately vanish if
the interventions are stopped (see the last 50 iterations).

It may not always be possible nor advisable to shift the orbit
exactly on the midpoint of a branch. Let us now assume that it
is possible to force the system onto the closest branch, but that
it drops uniformly distributed into the critical region. Fig. 4 il-
lustrates the consequences. Now the intervention dates are 21,
Fig. 4. The same simulation design as in Fig. 3, except that we do not set the
system on the midpoint of the closest critical branch, but assume that it drops
uniformly into these intervals. Interventions are now executed at time steps 21,
46, 71, 96, 121 and 146, respectively.

Fig. 5. The dynamics of the manipulated map for 100 different initial values.
Interventions are executed at time step 96, at which we force the trajectory
randomly in one of the four critical branches.

46, 71, 96, as before, and 121 and 146. As is visible, a crash oc-
curs in all six cases four time steps later. Since the interventions
have a partially random nature, periodicity cannot be observed
anymore. The average intervention size depends on how early
we manipulate the system. In general, we should observe that
the earlier we intervene the smaller is the necessary interven-
tion size to perturb the orbit on the crash path (since the average
distance to the nearest branch decreases backwards in time, cf.
Fig. 2).

Fig. 5 is designed to clarify how the intervention method
changes the dynamics. Interventions are carried out in period
96 so that crashes occur in period 100. We display 100 simula-
tion runs, generated from randomly drawn initial conditions, for
the time window t ∈ [94,103]. Before the interventions start,
the trajectories are scattered over the whole unit interval. Due
to the interventions, the system is on the crash path in periods
97, 98, 99, and 100. Afterwards, the system “recovers” rapidly
and displays the same (qualitative) motion as before. For in-
stance, in period 103, the trajectories are similarly dispersed as
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Fig. 6. The panels show the mean dynamics (out of 5000 samples) of the manip-
ulated map with additive noise (4). From top to bottom, we set σ = 0, σ = 0.01,
σ = 0.025, σ = 0.05 and σ = 0.1, respectively. The interventions are executed
in period 96.

in period 94. Hence, the general dynamics of the system is not
destroyed; only during the brief intervention and crash period,
a temporarily beneficial outcome may be realized.

Finally, we test the effectiveness of the intervention method
in the presence of noise. We thus add to the modified map (2)
a normally distributed random variable ξt with mean zero and
constant standard deviation σ :

(4)Xt+1 = r(Xt + Zt)
(
1 − (Xt + Zt)

) + ξt .

Due to the noise, we furthermore restrict Xt+1 to remain within
the unit interval. The remainder of the simulation design is as in
Fig. 5, except that we now display the mean dynamics, which
are computed out of 5000 intervention samples. From top to
bottom in Fig. 6, we set σ = 0, σ = 0.01, σ = 0.025, σ = 0.05
and σ = 0.1, respectively. The method naturally works best in
the deterministic case. In period 99, the mean of Xt is clearly
above 0.95 and in period 100, the mean of Xt is clearly below
0.05. It takes about two additional time steps until the mean
of Xt has recovered and is close to 0.5. Note that the addition
of some noise, e.g., σ = 0.01 or σ = 0.02, does not weaken
the intervention effectiveness much. This is probably because
the noisy perturbations are too small to push the system off the
crash path. In the presence of noise, it might therefore be ad-
vantageous to have a time series with many crashes which can
give wide crash pathes. If the noise level gets stronger, the crash
effect diminishes. While it may still be possible to raise the tra-
jectory in period 99, the effect for period 100 is basically gone
for σ = 0.1 (given that Xt is bounded between zero and one, a
standard deviation of σ = 0.1 may be considered as quite large).

Recall that we intervene only once, namely in period 96. In
the presence of large noise one may improve the effectiveness
of the method by repeating interventions until the envisaged
crash period is reached. These interventions basically have to
counter the exogenous shocks so that the system remains on
the crash route. Note also that we still use the crash pattern
identified in Fig. 2 which has been detected by observing deter-
ministic crashes. Learning these crash trajectories from noisy
time series may blur our results somewhat. On the other hand,
if one has some general knowledge of the underlying law of
motion, one may even derive the crash trajectories analytically
(as demonstrated in [15]).

3. Discussion

We present an approach which may be used to trigger
crashes at prespecified periods in time. The method is quite sim-
ple. In a first step, one has to identify typical crash paths from
time-series information. In a second step, one has to push the
trajectory of the system onto a crash route. One advantage of
the method is that it requires only a single perturbation. Further-
more, it does not need analytical knowledge of the underlying
dynamics. Time-series based approaches often have the seri-
ous drawback that they demand a large data acquisition leading
to long waiting times. In principle, the method presented here
already works when the system orbit visits the target a single
time in the available data. This is because our approach does not
rely on necessarily small perturbations. Hence, one can choose
an appropriate time period for the intervention where the sys-
tem is relatively close to the identified orbit. In practice, one
may, however, prefer to obtain multiple and wider crash paths,
in order to reduce the necessary intervention size. This requires
either a long time series with a sufficient number of crashes
or several time series of the same system. The impact of time
series length has been investigated in the context of excluding
certain system states such as outbreaks or extinction in pop-
ulation dynamics [26]. Moreover, it should be noted that our
algorithm requires the system parameters such as the per-capita
growth rate r in Eq. (1) not to be changed over time.

In addition, the method achieves at least partially its goal
under noisy conditions. We have illustrated the working of
the method using the logistic map. An extension to higher-
dimensional systems should be straightforward (cf. the ap-
proach in [26]). Since we force the system on the crash path,
we will not push it off the chaotic attractor (i.e., the chaotic
attractor will remain intact). The embedding theorem actually
allows us to reconstruct the full attractor even if we cannot mea-
sure all state variables. The only requirement for the method
to work in higher-dimensional systems is that we may need to
be able to manipulate all dynamic variables of the system. Fi-
nally, the focus of the Letter is on triggering crashes. But it is



F.M. Hilker, F.H. Westerhoff / Physics Letters A 362 (2007) 407–411 411
obvious that the method allows us, at least in a purely deter-
ministic environment, to target also other beneficial states. This
may have numerous applications in a wide field of nonlinear
systems that need to be casually controlled to exhibit certain
dynamical states.
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