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Abstract

To date, macroprudential policy inspired by the Basel III package is applied irrespective of the network

characteristics of the banking system. We study how the implementation of macroprudential policy in the

form of additional capital requirements conditional to systemic-risk measures of banks should regard the

degree of heterogeneity of �nancial networks. We adopt a multi-agent approach describing an arti�cial

economy with households, �rms, and banks in which occasional liquidity crises emerge. We shape the

con�guration of the �nancial network to generate two polar worlds: one is characterized by few banks

who lend most of the credit to the real sector while borrowing interbank liquidity. The other shows a

higher degree of homogeneity. We focus on a capital bu�er for SII and two bu�ers built on measures

of systemic impact and vulnerability. The research suggests that the criteria for the identi�cation of

systemic-important banks may change with the network heterogeneity. Thus, capital bu�ers should be

calibrated on the heterogeneity of the �nancial networks to stabilize the system, otherwise they may be

ine�ective. Therefore, we argue that prudential regulation should account for the characteristics of the

banking networks and tune macroprudential tools accordingly.

Keywords: agent-based model, capital requirements, capital bu�ers, �nancial networks, macroprudential

policy, systemic-risk.
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1. Introduction

The purpose of ensuring the stability of the banking system can be pursued with prudential instruments

(capital ratios, liquidity bu�ers, etc.) and structural instruments. The style of intervention of the supervisory

authorities in the wake of the �nancial crisis has sought to optimise the mix of micro- and macro-prudential

solutions and conditioning of the market form in which banking agents operate. Unlike the theoretical

reference models of regulation prevailing in the 1970s and 1980s (Stigler et al., 1983), which favoured solutions

oriented towards collusive oligopoly (Stigler, 1964) in order to make the banking system stable, the current

models try to intervene in one direction with instruments oriented to level the playing �eld, creating incentives

to competitive environments. Despite this, the �nancial crisis has shown that the potential for contagion

between �nancial institutions in crisis has been fuelled especially when it has been powered by entities

that are particularly interconnected with others. This characteristic, combined with the size and nature

of the original risk factors, required a number of regulatory proposals aimed at reducing the probability of

systemically associated failure events. The most relevant and commented on in the literature were the capital

bu�ers, some of which were applied crosswise and homogeneously to banks (conservation and countercyclical

bu�ers) and others di�erentiated by type of banks (G-SIFIs bu�ers). But there are also measures that are

in fact of a structural nature, such as those contained in the Bank Recovery & Resolution Directive (BRRD)

and in particular in the recovery and resolution plans, which are oriented to contain the growth in size and

by production lines of banks. The current regulatory framework has therefore introduced a mix of prudential

and structural tools (Gabbi and Sironi, 2015) raising numerous questions that are not always resolved with

regard to the e�ectiveness and ability to achieve the objectives of banking supervision, especially the macro

purpose to minimize the systemic risk. The debate on systemic risk and on the most e�ective supervisory

tools intersects with the process of diversi�cation of banks and more generally on the trend that can be

observed of systems that tend more or less to heterogeneity among the actors that are part of them. This

debate explores numerous implications: from stability to e�ciency, from innovation orientation to corporate

governance.

The issue of how banks' heterogeneity a�ects the stability of the �nancial system has been extensively

discussed in the literature. Banks can be heterogeneous along several dimensions such as size (Iori et al.,

2006), connectivity (Amini et al., 2016), connectivity and asset holdings (Caccioli et al., 2012), default

probabilities (Lenzu and Tedeschi, 2012), shocks, size and connectivity (Loepfe et al., 2013). A concise

review of the literature about the implication of banks' heterogeneity can be found in Chinazzi and Fagiolo

(2013). A strand in the literature exploring the role of heterogeneity to which Wagner (2008) and Beale et al.

(2011) are key contributors, focuses on the e�ect of correlations in banks' portfolios returns. The main insight

in this context is that when market players diversify their portfolios, banks' risk exposures become similar

and the system as a whole tends to a higher degree of homogeneity. In this case banks become individually

less risky, but systemic risk increases. Similar conclusions are derived by, Acharya (2009), Acharya and

Yorulmazer (2008) and Moore and Zhou (2013) who, to mitigate the potential systemic e�ect of excessive

portfolio diversi�cation, propose a correlation-based capital adequacy requirement, increasing, not only in the

individual risk of a bank, but also in the correlations of a bank's portfolio returns with those of other banks in

the economy. However, when homogeneity refers, not to the composition of banks' portfolios, but to banks'

size and risk appetite Iori et al. (2006) show that increasing heterogeneity destabilizes the system. In fact

switching from a situation where all banks have a similar size of deposits to another where the distribution

of deposits across banks is more uneven leads to systemic instability when interbank connectivity increases.

One policy implication that suggests itself is that interbank lending relationships be con�ned to banks that

share similar characteristics. The �ndings of Caccioli et al. (2012) reinforce this insight. Building on the

seminal model of Gai and Kapadia (2010), they study the probability of contagion in a �nancial network

model which accounts for banks' heterogeneous degree and balance sheet size. The main results is that the

extent of contagion is limited when banks are homogeneous in size and degree. Conversely, when banks show

heterogeneity along these dimensions, and connectivity is high, the probability of contagion conditional to

the failure of the bank with the biggest balance sheet is higher than the probability associated to the default

of the most interconnected banks. This entails that imposing additional capital bu�ers to big banks may be

more e�ective than targeting the most interconnected ones. Similar policy implications are also discussed in

Loepfe et al. (2013).

The contribution of the current paper is to assess the e�ectiveness of macro prudential measures in a context

that may have a more or less diversi�ed market environment. In particular, the main research question of
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the paper is whether prudential measures aimed at calibrating capital in the face of banking losses can be

more or less e�ective when the actors in the banking system tend to be more or less heterogeneous with each

other. Speci�cally, we aim to identify the capacity of the di�erent criteria for the application of capital ratios

to minimize the risk of contagion when bank heterogeneity is given in terms of banks' size and degree in the

banking network. A fundamental role in our model is played by the interbank market. It is a source of funding

that is in itself a safety net. This source of liquidity is preferred by banks to central bank re�nancing both

for signaling reasons and because the interbank market is not collateralized, unlike central bank facilities.

If the �nancial dynamics that is evident in the interbank market synthesizes the funding liquidity risk and

related contagion, the second protection factor is that represented by capital, which is the element on which

the international regulatory framework is based, since the Basel Accord of 1988. In our model, when a bank's

equity capital is negative (i.e. when the value of assets is lower than the value of liabilities) bankruptcy occurs.

Then its shareholders bail-in by injecting su�cient new capital to reach the minimum ratios. To simulate the

impact of di�erent capitalization measures in di�erent banking market contexts, we conduct counterfactual

policy experiments in an agent-based model (ABM) of the economy. The original model (Gurgone et al.,

2018) is expanded to allow banks to use systemic risk measures to determine their capital requirements and

to modify the heterogeneity of the banking network, where moving towards a more homogeneous system

grows the similarity of banks' portfolios and so risk diversi�cation. Moreover, the original model produces

risk correlation in banks' portfolios since these are exposed to the �rm sector, whose pro�tability changes

along the business cycle.

In our study, we compare standard regulatory measures based on risk weighted assets with the capital

needed to ensure the resilience of banks in the event of losses based on systemic risk measures. The scores

are calculated using three di�erent risk assessment methods:

(i) EBA method for identifying the degree of exposure to contagion risk. The method assigns a score to each

institution calculated on the basis of three elements: size, importance, interconnection.

(ii) A second criterion is a systemic impact algorithm, called DebtRank (Battiston et al., 2012). It is a metric

based on the nature of the network representing the banking system, in particular on the relationship between

banks-�rms and interbank exposures. In this case, the capital bu�ers of the individual node (which is the

individual bank) are determined on the basis of the systemic impact derived from the ranking generated by

the DebtRank.

(iii) The third criterion applied in our model is always derived from the DebtRank algorithm, but instead

of measuring the impact we take into account the vulnerability of a bank measured by the relative capital

loss induced by the forced default of other individual banks. The �nancial distress is de�ned as the relative

change in shareholders' equity.

The shocks that can lead to bank failure are numerous and our paper simulates shocks transmitted by �rms

when the pro�tability of borrowers of funds is not su�cient to repay bank debts; shocks that can be generated

in the interbank market due to lack of liquidity; �nally, shocks driven by deleveraging when distressed banks

liquidate their assets on the market. We assess the di�erent roles of these channels of risk propagation in

the cases of high or low heterogeneity in the banking industry. By simulating low and high heterogeneity

market models within the agent based model we identify the probability of losses, defaults of �nancial and

non-�nancial �rms, and contagion and their response to capital requirements determined via di�erent policy

measures. Our approach presents some similarities with Poledna et al. (2017). They employ a macroeconomic

agent-based model to compare the e�ectiveness of Basel III capital surcharges with a tax on systemic risk.

The last turns out to be the best policy since it can shape the topology of the interbank reducing systemic-

risk. Instead, we keep the Basel's bucketing approach, and we extend it to other systemic-risk assessment

methods when the banking system is more or less heterogeneous.

The main �ndings reveal that the e�ectiveness of macroprudential capital bu�ers depends on the degree

of heterogeneity of the banking network, hence the best policy changes in di�erent settings.

We observe that a more homogeneous banking system, and speci�cally the interbank network, leads to more

stability regardless of the macroprudential policy implemented. When banks are homogeneous in deposits,

the interbank market maximizes risk diversi�cation, whose bene�ts exceed the drawbacks of risk spreading.

At the same time, the homogeneity of banks in terms of assets lowers knock-out e�ects and therefore reduces

the probability of contagion or extreme events.

Moreover, the characteristics of systemic-important banks modify switching to a more homogeneous network.

While it is advisable to apply additional capital surcharges to the largest banks in terms of assets under high

heterogeneity, the key characteristics of systemic-banks under low heterogeneity are the size of liabilities
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jointly with interbank interconnectedness. Applying such network-contingent policies permits the reduction

of the frequency of extreme events and, ultimately, to enhance �nancial stability.

The rest of this paper is organized as follows: Section 2 describes the modelling framework, distress

dynamics, systemic-risk measures and macro-prudential policies. Section 3 goes through the results of the

simulations and the policy experiments. Discussion and Conclusion are in Sections 4 and 5.

2. The model

In this section we provide an overview of the macroeconomic model and a detailed description of the behavior

of banks. The reader is referred to section A.1 in the Appendix for further details about the model. The

structure of the model builds on an amended version of the agent-based-model (ABM) in Gurgone et al.

(2018), though the �nancial sector has been further developed.

2.1. Overview

The economy is populated by three main groups of agents: households hh = {1, 2, . . . , NH}, �rm ff =

{1, 2, . . . , NF } and banks bb = {1, 2, . . . , NB}. Moreover, the economy includes a government, a central

bank and a special agency. All these entities have their own balance sheet and obey to behavioral rules.

Agents interact in di�erent markets: �rms and households meet on markets for goods and labor, �rms

borrow from banks on the credit market, banks exchange liquidity in the interbank market. The government

makes transfer payments to the household sector while keeping the public debt at a steady level. The CB

generates liquidity by buying government bills and providing advances to those banks that require them;

it furthermore holds banks' reserve deposits in its reserve account. Households work and buy consumption

goods by spending their disposable income. In the labor market, households are represented by unions in

their wage negotiations with �rms, while on the capital market, they own �rms and banks, receiving a share

of pro�ts as part of their asset income. Firms borrow from banks to pay their wage bills in advance, hire

workers, produce and sell their output on the goods market. The banking sector provides credit to �rms,

subject to regulatory constraints. In each period banks try to anticipate their liquidity needs and access the

interbank market as lenders or borrowers. If a bank cannot secure the demanded liquidity or it is insolvent,

it sells part of its illiquid assets at a discount to the special agency that acts as a liquidator. The assets in

the agency's portfolio are held to maturity, while pro�ts or losses are transferred to the Central Bank.

2.2. Networks

There co-exist static and dynamic networks. The �rst type is generated before the beginning of simulations

and it is kept unchanged. It describes the time-invariant connections of depositors and shareholders with

banks. Conversely, link formation in �rms-banks and interbank networks is not constrained by any pre-

determined structure but settled by a matching mechanism. In toto, static and dynamic networks form a

multilayer network, where households, �rms, and banks are interconnected.

We aim to represent high and low heterogeneity worlds. In the �rst world we call interbank lenders those

banks having many depositors but few lending opportunities toward �rms. The principal activity of interbank

lenders is lending to other banks, thus they have low interbank in-degree and form the peripheral part of the

interbank network. Their size in terms of net worth is negatively correlated with the degree in the deposits

networks. At the opposite, we call credit lenders those banks with high out-degree in the credit market that

have few links with depositors but are densely connected in the interbank network, being the core. They

borrow funds from the peripheral banks and their size is positively correlated with their degree in the �rm-

bank credit market. The low heterogeneity world is a �attened version of the other one. Banks are more

homogeneous in the number of depositors, lending opportunities, net worth and the interbank network does

not show a core-periphery structure anymore.

The remainder of this section presents the formation algorithm of static networks. Links formation in

dynamic networks is described by the matching mechanisms in Section 2.3. Fig. 1 shows the distribution of

banks' out-degrees. Baseline statistics are in A.3.
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2.2.1 Heterogenous world

Depositors' networks A preferential attachment algorithm controls the formation of the bipartite static

graphs that describe the connections of depositors and banks. Since both households and �rms have deposits,

two di�erent networks are needed. We employ the same �tness measure to ensure that the normalized total

degrees of banks are similar in both cases. At each step τ a household (�rm) i enters the algorithm and

connects to a randomly chosen bank b with a probability pdib,τ . This depends on the number of b's links

(degreedb,τ ), which is updated at each iteration, a randomly assigned �tness measure (fitnessdb), and a

constant (ad).

pdib,τ =
degreedb,τfitness

d
b + ad∑

b

(
degreedb,τfitness

d
b + ad

) where i = {h, f} (1)

Each household (�rm) can have at most one link, namely she keeps her deposits in one bank only. The

algorithm is repeated until everyone is connected to a bank so that the total degree of the network is equal

to the number of depositors.

Pseudo-credit network The �rms-banks credit network is determined endogenously through a preferen-

tial attachment mechanism as in Eq. (12) in Section 2.3.1. The attachment probability depends on banks'

total degree in a static network called pseudo-credit network. The pseudo-credit network is generated by

the same preferential attachment mechanism of Eq. (1), but the �tness measure is the inverse of fitnessdb
normalized by its sum so that the total degree is negatively correlated with the number of links in the deposits

networks. Moreover, when a new link is created �rms do not exit from the algorithm but meet the next bank

in the list until the total number of links exceeds an integer linkmax.

fitnesscb =

∑
b fitness

d
b

fitnessdb

This creates a guideline for the attachment mechanism where the probability to connect to a �rm is negatively

correlated with the number of depositors.

Shareholders' network The bipartite shareholders' network determines the identity of shareholders of

�rms and banks. Despite our simpli�ed framework does not provide precise treatment for equity shares,

shareholders receive dividend payments from the banks to which they are connected and will bail them in

contingent upon bankruptcy. The number of shareholders of �rms and banks is a positive function of the

mutual connections in the pseudo-credit network. In other words, we assume that the larger the degree

of �rms (or banks), the larger the number of shareholders. This roughly re�ects the idea that the most

interconnected agents are those with the best lending or borrowing opportunities. Therefore, they have

larger net worth and thus more shareholders. The probability that a node h connects to a �rm (bank) j is a

function of j's degree in the pseudo-credit network (degreecj) and a constant (as). The algorithm is repeated

5 times. At each repetition, h can connect to any j conditional on the attachment probabilities. We do not

restrict the maximum links of households to banks and �rms so that each i can be connected to more than

one node.

pshj =
degreecj + as∑
j

(
degreecj + as

) , j = {f, b} (2)

2.2.2 Homogeneous world

Low network heterogeneity is achieved by changing the attachment mechanisms. Depositors' and pseudo-

credit networks are generated with a simple mechanism described in Table 1. The algorithm for shareholders'

network is unchanged.
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Depositors' network Pseudo-credit network

(i) Form a list of households (or �rms).

(ii) Each element i in the list is sequentially as-

signed to a random bank.

(iii) i is removed from the list.

(iv) Stop only when all elements are matched to a

bank.

(i) Form a list of �rms.

(ii) Each element i in the list is sequentially as-

signed to a random bank.

(iii) i is not removed from the list.

(iv) Stop after 5 iterations of all elements in the

list.

Table 1: Generating algorithms of depositors' and pseudo-credit networks.

degree

10-2

100

cc
df

Homogeneous world

firms' deposits

households' deposits

pseudo-credit

shareholders

degree

10-2

100

cc
df

Heterogeneous world

firms' deposits

households' deposits

pseudo-credit

shareholders

Figure 1: Loglog complementary cumulative distribution function (ccdf) of banks' total degree for low (left) and high

(right) network heterogeneity.

2.3. Banks

Banks play simultaneously in the credit and interbank markets by lending to �rms and trading liquidity.

The overall amount of money in the system is �xed. It means that money is exogenous, although studying

the system under endogenous creation of money would be an avenue for future research. Lending to the real

sector is �nanced out of short-term liabilities, namely deposits of households and �rms, or interbank funds.

In case liquidity is not immediately available from these sources we assume that banks sell assets in a special

market at the price determined in Eq. (20). The asset side of banks' balance sheet consists of loans to �rms

(L), interbank lending (I l), highly liquid assets or liquidity (R). Liabilities are deposits of households and

�rms (Dep), and interbank loans (Ib). Table 2 reports the composition of the balance sheets of banks and

�rms.

Banks

Assets Liabilities

L Dep

I l Ib

R

nwB

Firms

Assets Liabilities

Dep L

nwF

Table 2: Balance sheets of banks (left) and �rms (right). Loans to �rms (L), interbank lending (Il), liquidity (R),

deposits (Dep), interbank borrowing (Ib).

The net worth of bank b at time t is de�ned according to

nwBb,t = Rb,t + Lb,t + I lb,t −Depb,t − Ibb,t. (3)
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Banks comply with a standard minimum capital requirement so that net worth must be greater or equal than

a fraction 1
λ of risk-weighted-assets (RWA). Assuming that liquidity R is riskless, RWAb,t ≡ ω1Lb,t + ω2I

l
b,t.

nwBb,t ≥
1

λ
RWAb,t (4)

Gross pro�ts ΠB are given by the di�erence between interest in�ows and out�ows, where rL is the rate

paid to deposits on Central Banks' account, the subscript k indicates the residual maturity of loans to �rms,

rib is the interest rate on interbank lending, and rD is the deposit rate to households or banks. If pro�ts are

positive, these are subject to taxes at the rate of θB . Then the �xed share δB is distributed to shareholders.

ΠB
b,t = Rh,t−1r

L +

J∑
j=1

Lbj,t−kjr
f
bj,t−kj +

Q∑
q=1

I lbq,t−1r
ib
bq,t−1 −Db,t−1r

D −
Z∑
z=1

Ibbz,t−1r
ib
bz,t−1 (5)

The net worth of bank b updates with the retained pro�ts minus the losses from exposures to �rms and

banks, and operating costs c increasing with the bank's size.

∆nwBb,t = (1− θB)(1− δB)ΠB
b,t −

J∑
j=1

lossFt,bj −
Q∑
q=1

lossBt,bq − c(nwBb,t−1)2 (6)

Recovery rates The e�ective loss on a generic asset abi owed by i to b is abi(1 − ϕi), where ϕ is the

recovery rate. All of i's creditors can recover ϕi = Ai
Li , i.e. the ratio of borrower's assets (Ai =

∑
i ai) to

liabilities (Li). However, the nominal value of illiquid assets is not immediately convertible in cash and must

�rst be liquidated to compensate creditors. We denote the liquidation value of the banks' assets Aliqi , where

Aliqi ≤ Ai. The actual recovery rate can be written as:

ϕib ≡
Aliqi
Li

Furthermore, we assume that there is a pecking order of creditors, so that they are not equal from the

viewpoint of bankruptcy law: the most guaranteed are depositors and then banks with interbank loans. For

instance, those creditors who claim interbank loans towards the defaulted bank i recover the part of i's assets

left after the other creditors have been compensated. The recovery rate is expressed as

ϕi = max

(
0,
Aliqi −Depi
Li −Depi

)
. (7)

It is worth noticing that loss given default is LGD ≡ 1 − ϕ, so that the net worth of creditor b updates as

nwBb,t = nwBb,t−1 − LGDib,tabi,t.

2.3.1 Credit market

Firms and banks meet in the credit market, where the former demand credit to anticipate the wage bill,

while the latter allocate the supply of credit as determined by Eq. (8). The maturity of loans is randomly

extracted by a discrete uniform distribution U(d, d̄).

The maximum credit that can be lent to �rms is constrained by minimum capital requirements in (4).

Lsb,t+1 =
λ

ω1
nwBb,t −

ω1

ω2
I lb,t − Lb,t (8)

All banks assign the same default probability ρf to a �rm j, which depends on its desired leverage rate - that
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is demanded credit to net worth ratio `, where `∗, vf , and uf are calibration parameters.1

ρfb,t = uf exp

[
vf
(
`j
`∗
− 1

)]
(9)

Bank b sets the interest rate to j depending on her cost of funds (cf) and default probabilities.

rfbj,t =
1 + cf b,t

1− ρfbj,t
− 1 (10)

where cfb,t is bank's cost of funds. It depends on the composition of liabilities, with wsb,t representing the

share of each source of liquidity (deposits, interbank borrowing) over total liabilities.

cfb,t = wDb,tr
D + wIb,tr

b
t−k,b s = {Dep, Ib} (11)

Matching in the credit market Links in the �rms-banks credit network form endogenously following a

preferential attachment mechanism with probabilistic switching. At the opening of the credit market �rms

demanding loans are sorted by their ascending default probabilities and matched one-by-one with a bank.

This is chosen by sampling with replacement among those with positive credit supply. Sampling weights ν

depend on banks' share of the total degree in the pseudo-credit network, which is negatively correlated with

the number of depositors (see Section 2.2).

νb =
degreeb∑
b degreeb

The probability that a �rm j switches to the candidate partner b and cuts the links with her previous

lender k is regulated by (12) where ν0 is a midpoint constant.

pswitchjb =
1

1 + exp [−κ(νb − νk − ν0)]
(12)

The algorithm is repeated for all banks in the list until the credit demand of �rm j is exhausted; the loan

supply of banks goes to zero; after j meets the last bank in her list. If there is no previous lender k, j is

matched with b.

2.3.2 Interbank market

Banks participate in the interbank market to protect themselves against the risk of running out of funding.

This is achieved by setting aside a bu�er of liquidity large enough to run bank activities without incurring

shortages. If such target cannot be reached, illiquid assets (loans to �rms) are sold. Di�erently from Gurgone

et al. (2018), where the Central Bank always acts as the lender of last resort, we assume that banks prefer to

retrieve liquidity in the market rather than borrowing from the discount window of the Central Bank. This

would signal their riskiness in that cannot access other sources of funding exposing them to the stigma of

peers, as documented in Armantier et al. (2015). The liquidation process is detailed in 2.4 where the asset

price is determined by Eq. (20). In case a bank needs to sell a sizable quantity of assets, liquidation could

depress the �nal price and determine the deterioration of its balance sheet.

Since the primary source of bank funding is deposits, the interbank market takes place when there are

endogenous changes in deposits, that is three times within one iteration of the model. At each market session

banks try to anticipate how much liquidity they need to avoid shortages until the closing of the market and

form a liquidity target. In the end, the market closes and banks settle their positions. The timeline of the

market unfolding is represented in Figure 2.

1The price of consumption goods is set by �rms via a mark-up on the unitary cost of output, which includes the labor and
credit cost. As the wage rate and the mark-up rule is equal across all �rms, the cost of credit a�ects the chances of �rms to sell
the production in the competitive goods market. Thus, high leveraged �rms pay a greater rate on loans. Their �nal goods are
comparatively more expansive and are subject to greater losses than those less leveraged. Therefore, the assessment of �rms'
default probability is simply expressed as a function of the leverage rate.
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Bail-in of banks

and creation of

new �rms

IB session 1

Credit market

IB session 2

Sales and Pro�ts

IB session 3

Defaults and losses

IB closes

Figure 2: Timeline of the interbank market (IB). Source: Gurgone et al. (2018)

Bank b needs to borrow additional liquidity if the inequality (13) is not satis�ed otherwise b o�ers the

positive di�erence in the interbank market.

The left-hand-side is the liquidity held at the CB net of the compulsory reserves. At the right-hand-side

liqtag = β(outE − inE) represents the liquidity bu�er, which depends on the di�erence between expected

cash out�ows and in�ows during one period.

Rh,t − rrDeph,t ≥ liqtagb,t (13)

The expected cash out�ows are given by the sum of the payment of interest rates on deposits, the expected

cost of interbank borrowing, and the expected roll-over of existing loans to �rms. Expected values are denoted

by superscript E and are computed by an exponential weighted average of past values. The expected cash

in�ows are the sum of interest payments on loans by the subset of �rms j, plus the principal of loans that

will be paid back at the end of t by borrowers V weighted by their default probabilities, plus the interest

paid by the CB on reserves.

The interbank demand and supply are obtained from (13). Demand is speci�ed in Eq. (14).

Idb,t = liqtagb,t − (Rb,t − rrDepb,t) (14)

As with loan supply, the supply of interbank funds in (15) is constrained by the minimum regulatory capital

requirements.

Isb,t = min

Rb,t − rrDepb,t − liqtagb,t , λ

ω2
nwBb,t −

ω1

ω2

∑
j∈J

Lbj,t−k −
∑
z∈Z

I lbz,t−k

 (15)

The interbank reservation rate rask is the minimum rate at which banks are willing to lend interbank

funds. It is adjusted for the default probability of the counterparty, ρib. For a hypothetical borrower z it is

rresbz,t =
1 + rL

1− ρibbz,t
− 1. (16)

The default probability computed by a potential lender b for a bank z is a function of its observed �nancial

leverage, namely the total exposures to equity ratio levib, where lev∗, vib, and uib are calibration parameters.

ρibz,t = uib exp

[
vib
(
levz
lev∗

− 1

)]
(17)

Matching in the interbank market Interbank borrowers enter randomly one-by-one and are assigned to

a random candidate lender. Lenders' ask price is the reservation rate rres from (16). Trading is only possible

above it. Borrowers do not know at what rate they could be charged so they bid taking as a reference the

mid-corridor between the minimum and maximum rates in the system. These are set by the central bank and

correspond to the rate paid on excess funds rL and the rate o�ered by the discount windows for emergency

re�nancing operations rH . The bid rate of borrowers is formed as a mark-up over the mid-corridor.

rbidz,t =
rH + rL

2
(1 + εz,t) with rbidz,t ∈ [rL, rH ] (18)
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The mark-up is increased if there is un�lled demand and decreased otherwise without exceeding the bound-

aries of the corridor.

εz,τ+1 =

{
εz,τ + γ if Idz,τ > Ibz,τ and rbidz,τ ≤ rH

εz,τ − γ if Idz,τ = Ibz,τ and rbidz,τ ≥ rL

where τ = {1, . . . , nτ} is the ordinal number of borrowing attempts within each execution of the interbank

market. Any interbank transaction takes place if rbidz ≥ rresbz at ribbz,t = rbidz,t .

2.3.3 Risk management

Banks resort to risk management strategies to mitigate the losses from systematic risk.

At the loan level, banks diversify credit risk by limiting the maximum exposures to �rms based on the

estimated default probabilities ρf and a maximum equity loss per loan ζ. We follow Assenza et al. (2015)

so that the maximum amount of outstanding loans to �rm j is

Lmaxbj,t ≡ Lbj,t ≤
ζnwBb,t

ρfj,t
.

At the aggregate level, the risk management strategy is operated by setting a maximum portfolio to equity

ratio depending on perceived risk. Banks set a target leverage ratio in terms of assets over equity that

changes depending on their risk tolerance. The last is determined by a V aR level estimated on returns to

risky assets. We employ a parametric VaR at α = 0.99 and assume that mean returns and volatility follow

a normal distribution.

V aRαt (L+ I l) ≤ nwBt ⇒
L+ I l

nwBt
≤ 1

V aRα
(19)

Therefore, banks will manage the total credit supply to comply with Eq. (19) so that the leverage ratio does

not exceed 1
V aRα .

2.3.4 Recapitalization

When the net worth of a bank is negative it declares bankruptcy. Its assets are liquidated and distributed to

creditors as described at the beginning of Section 2.3 so that the net worth equals zero. The only elements

left on the balance-sheet are deposits and a corresponding amount of R on the asset side. The bank stays

out of business for a minimum of timerB periods or until it can be recapitalized by its shareholders, so it

is not replaced by another one but receives fresh capital. The new capital is paid by banks' shareholders

proportionally to their number, where the shareholders of a bank are those households that receive dividends

from it. The assumption is consistent with the construction of shareholders' network presented in Section 2.2,

i.e. banks with a larger number of connections with �rms have more shareholders than the other. Thus, those

that can achieve a large size in terms of assets and net-worth have a larger number of shareholders ready to

bail-in by injecting new capital. If the new capital of those banks that have more lending opportunities (the

total degree in the pseudo-credit network) is not enough, they could fall into bankruptcy in the aftermath of

re-capitalization due to the sharp growing exposure to the �rms' sector. The new capital, φ
√
Nsh
b is therefore

proportional to the number of shareholders of bank b.

2.4. Distress dynamics

Distress propagates through balance sheets when agents go out of business. The dynamics is illustrated in

Figure 3. We distinguish between two sources of distress: systematic and illiquid. The systematic source

starts with the deterioration of �rms' balance sheets. It operates in every simulation producing a recurring

pattern of defaults and losses. Instead, the illiquid source is activated infrequently but produces liquidity

crises with high losses and longer bankruptcy chains. It comes into play when the deterioration of banks'

balance sheets leads to a shortage of liquidity and consequently to assets liquidation.

10



�rms' balance

sheet deterioration

defaults on loans

banks' balance

sheet deterioration

defaults on interbank loansliquidation of assets

defaults on deposits

Figure 3: Distress is transmitted from �rms to banks through credit market, from banks to banks in interbank market

and from banks to �rms through banks' liabilities.

Systematic It is connected to the model's dynamics that produces cyclical �uctuations. Distress originates

in the �rms' sector, and then it is transmitted to banks. In good times, when unemployment is low,

there is upward pressure on prices following a rise in nominal wages. At some point, �rms' revenues

from the goods market are not enough to repay loans hence some of them go into default. Shocks

propagate from �rms to banks, within the interbank market and from banks to �rms.2

Illiquid The second origin is related to rationing in the interbank market: the supply of liquidity is subject to

the risk-management strategy of banks, which adjusts it to respond to a fall in returns. In a downturn,

the outstanding stock of loans and credit demand by �rms do not decrease simultaneously with supply.

Although total credit supply is revised downwards, those lenders that have experienced negligible losses

keep on lending to �rms and substitute other banks that have temporarily limited their exposures. This

has a twofold e�ect: it raises the liquidity demand of these lenders and increases their leverage ratios.

Combining reduced interbank supply and sustained demand of some lenders may bring about rationing.

Albeit such circumstances do not arise in every computer simulation, in a limited number of cases it

gives rise to a liquidity crisis where a bank is forced to liquidate its assets to retrieve liquidity. This

may determine bankruptcy followed by the propagation of distress to interbank creditors and further

rounds of contagion. A representative run of the model is shown in Figure 4, which displays simulations

of total production, and demand and supply of interbank funds. Liquidity crises arise occasionally from

the rationing on the interbank market.

Figure 4: Representative simulations of aggregate supply and interbank demand and supply. A liquidity crisis occurs

around t = 700. A default cascade follows the liquidation of assets of the illiquid bank. This causes a credit crunch

and consequently a slump in aggregate supply.

Liquidation of assets Banks liquidate assets (loans to �rms) in two cases: when they run out of liquidity,

as explained above, and when they default to repay creditors. The role of liquidator is operated by a special

2If the net worth of a bank is negative, it defaults on its liabilities including the deposits of �rms and households. A deposit
guarantee scheme is not implemented.
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agency that buys the assets of bank b at price p

pτ = pτ−1

(
1− ∆qb,τ

qt

1

ε

)
(20)

where ∆qb,τ is the quantity of loans that bank b needs to liquidate,3 ε is the asset price elasticity, qt is the

total quantity of loans in period t. Banks that need liquidity enter the market in a random order marked

by τ , so that the �rst one sells at p1, the second at p2 and so on; we assume that at the end of each unit of

time the initial asset price is set again at p0 = 1. The assets purchased by the agency are then kept until

maturity. Pro�ts and losses realized by the agency are transferred to the government so that money is not

subtracted to the stock-�ow consistent system.

2.5. Systemic capital bu�ers

The banking sector is regulated through capital requirements. As mentioned in Section 2.3, all �nancial

institutions must comply with minimum capital requirements that correspond to a �xed ratio of RWA. In

this section we introduce another supplementary requirement that adds up to minimum capital requirements.

This is an additional capital surcharge that we call �Systemic Capital Bu�er � (SCB) as it is based on a

systemic-risk assessment of banks. Moreover, we implement three types of SCBs, which di�er from each

other depending on how systemic-risk is measured. The �rst type of surcharge is the well-known bu�er for

systemically important �nancial institutions and addresses high-impact banks.4 The second one is addressed

to the same target (high-impact �nancial institutions), but systemic-importance is assessed di�erently. The

third capital bu�er shares the same methodology of the second but aims to measure the systemic vulnerability

of banks. Following the technical classi�cation of the ESRB, the last pair falls within the so-called systemic-

risk bu�er (SyRB), while the �rst is a bu�er for O-SII.5 In any case, when capital falls short of the regulatory

target, banks decrease their credit supply and retain dividends until they comply with the regulation.

Score-based capital bu�ers How we assign SCBs relies on scores. Banks are subject to an assessment of

their systemic importance that we can think of being conducted by a �nancial authority and whose outcome

is quanti�ed by a score. Before introducing the details about systemic-risk assessment, we discuss how capital

bu�ers are assigned to banks based on their score.

3Banks �rst determine their liquidity need, then compute the fair value of their portfolio loan by loan. Next they determine
∆q taking into account Eq. (20). Lastly, they choose which loans should be liquidated to reach their objective.
The loans for sale are evaluated at their fair market value by discounting cash �ows:

Lfvbj =
Lbj(1 +Mrf )(1− ρfj )

rM

where Lb,j is the book value of the loan of bank b to �rm j, M is the residual maturity, rf is the interest rate on the loan, ρf

is the default probability of �rm j, and r is the risk-free rate.
4We refer to the capital bu�er for other (domestic) systemically important institutions (O-SII) absent any cross-jurisdictional

activity of banks in our framework.
5�The systemic risk bu�er (SyRB) aims to address systemic-risks of a long-term, non-cyclical nature that are not covered by

the Capital Requirements Regulation� (ESRB, https://www.esrb.europa.eu/national_policy/systemic/html/index.en.html).
European �nancial authorities are free to de�ne the SyRB as long as it does not interfere with any other capital requirements.
This translates into di�erent scopes and many ways to de�ne the SyRB.
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Figure 5: Distribution of systemic-risk scores under high (top) and low (bottom) heterogeneity computed with the

methods: EBA (a), DebtRank vulnerability (b), DebtRank impact (c). All distributions show positive skewness and

right tails, which are longer under high heterogeneity.

Scores of banks are classi�ed into �ve categorical buckets or classes, as showed in Table 3. Each bucket

corresponds to an interval determined on the distribution of scores resulting from simulations without capital

bu�ers, which is low or high heterogeneity and risk-weighted adjusted capital requirements. In other words,

we �rst simulate the model to obtain the distribution of scores (see Figure 5) under a given type of systemic-

risk assessment but without activating SCBs. After that, we divide the distribution into intervals and assign

intervals to buckets, where each bucket corresponds to a given interquantile range as reported in the second

column of Table 3. Buckets are linked to capital bu�ers that add on minimum capital requirements. The

method for selecting the score quantiles assigned to capital bu�ers is discussed in Section A.5. When SCBs

are activated, Eq. (4) is substituted by

nwBb,t ≥ (
1

λ
+ ηb,t)RWAb,t (4a)

where η is the value of the SCB based on a 12 periods moving average of the score.

Class Score quantiles Capital bu�er as % of RWA

5 [q4, +∞] 3.0% CET1

4 [q3, q4) 2.5% CET1

3 [q2, q3) 2.0% CET1

2 [q1, q2) 1.5% CET1

1 [q0, q1) 1.0% CET1

Table 3: Determination of capital bu�ers. Scores are classi�ed in intervals based on selected quantiles (q).

Systemic-risk assessment Scores are computed with three di�erent risk-assessment methods: (i) �EBA

method� for the identi�cation of O-SII; (ii) DebtRank algorithm measuring systemic impact; (iii) DebtRank

algorithm measuring systemic vulnerability.

i) Additional capital bu�ers for systemic-important institutions (SII) have been architected with the idea

to reduce the impact that the failure of a SII might have on �nancial stability. They are speci�cally

addressed to institutions that are �too-big-to-fail� or �too-interconnected-to-fail�. To determine capital

bu�ers we adapt the guidelines of EBA (European Banking Authority) to our model. The method

assigns a score to each institution computed as a weighted average of three evaluation criteria (size,

importance, interconnectedness). Table 4 reports the indicators, weights, and the model variables for

each criterion.

ii) In line with the aim of capital bu�ers for SIIs, we provide an alternative method to measure the

impact of banks. It is based on DebtRank (Battiston et al., 2012), a network algorithm inspired by

feedback-centrality that evaluates the importance of a node (bank) in the interbank and �rm-bank credit

networks. Therefore, capital bu�ers based on systemic impact are derived from a score computed with

DebtRank.

The algorithm forces the default of banks one-by-one and, for each defaulted bank, measures the

relative equity loss of the �nancial system, i.e. the ratio of total equity (�rms plus banks) after and
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Criterion Indicators Variables Weight

Size Total assets (Lb+I
l
b+Rb)/

∑
(Lb+I

l
b+Rb) 33.33%

Importance Private sector deposits Depb/
∑
Depb 16.66%

Private sector loans Lb/
∑
Lb 16.66%

Interconnectedness Intra-�nancial system assets Il/
∑
Ilb 16.66%

Intra-�nancial system liabili-
ties

Ibb/
∑
Ibb 16.66%

Complexity N.A. in the model

Table 4: Scoring system for the identi�cation of O-SIIs.

before the default. This ratio represents the impact that the defaulted bank has on the system. Banks'

score is the mean of the impact ratio computed 500 times per bank. Scores are then employed for the

determination of capital bu�ers utilizing of the bucketing mechanism presented in Table 3. More details

about DebtRank are in Appendix A.2.

iii) Also, capital bu�ers based on systemic individual vulnerability are derived from a score computed via

DebtRank. However, rather than measuring the impact, we account for the relative equity loss induced

by forcing the defaults of banks one-by-one. The relative equity loss h represents the �nancial distress

and is de�ned as the change in equity at the end of one iteration (T ) to the initial equity. It is between

0 and 1: 0 corresponds to no losses, while 1 is bankruptcy.

hb,T ≡
nwBb,T − nwBb,0

nwBb,0
(21)

To be more clear, suppose we are interested in the relative equity loss of bank b. Then we force the

default of all other banks, one-by-one. As for case (ii), the algorithm is iterated 500 times per bank.

At the end of each iteration we record hb,T and after all iterations we have a 500 × (N b − 1) array

containing the relative equity loss of b. The systemic vulnerability score is the average hb,T across all

observations.
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3. Results

Results are obtained from simulations of the model in Matlab. We run 1000 Monte-Carlo iterations of the

model for each type of systemic capital bu�er under high and low heterogeneity. The time length of one

simulation is 800 periods, from which we eliminate the transient time of 300 periods. The seed of the pseudo-

random number generator takes di�erent values for every Monte-Carlo iteration so that the realization of

random variables is not repeating itself. It produces random variations in the network structures as well.

3.1. Heterogeneity

The �rst set of results summarized in Figure 6 shows the e�ects of changing the heterogeneity in network

structures. The �rst two complementary cumulative distribution functions (ccdfs) from the left refer to the

degree distributions of banks, which is the distribution of links from banks to �rms (bank lending) and from

banks to banks (interbank borrowing). The high and low heterogeneity curves move away as the values

on the horizontal axes increase. Changing the network structures produces the expected e�ect, viz. higher

degrees are observed in the heterogeneous world. Though the degree distribution is dissimilar, it should be

noted that it is not perfectly homogeneous under low heterogeneity as the matching mechanisms operating in

credit and interbank markets generate dynamic networks deviating from uniformity. The same result applies

to the size distribution of banks measured by net worth (which is also highly correlated to assets and balance

sheet size), but no di�erences are displayed for the net worth of �rms. The last is presumably due to the lack

of assumptions about banks' e�ciency to channel funds and/or the ability of banks in solving asymmetric

information. The third graph on the right of Figure 6 displays the similarity between banks' portfolios under

low and high heterogeneity. We expect that the networks generation process leads to a polarization in the core

business of banks under high heterogeneity, i.e. the portfolios of interbank and credit lenders are dissimilar.

We measure portfolio similarity by a Generalized Jaccard index. The index is de�ned as

Jaccb,k =

∑S
s=1 min (Ψb,s, Ψb,s)∑S
s=1 max (Ψb,s, Ψb,s)

for the portfolios of banks b and k, where S is the total number of assets and Ψb,s is the share of asset s in

b's portfolio, such that
∑S
s=1 Ψb,s = 1. Under our assumptions S = 3, since there are three types of assets:

loans to �rms, interbank loans, and liquidity. The Jaccard index gives a value in the interval [0, 1], where the

maximum similarity is achieved at 1 and the minimum at 0.

The distribution of the average values of Jacc reveals that dissimilarity is more marked when heterogeneity

is high as the corresponding distribution is located below the homogeneous one (at its left on the histogram).

The two distributions cross in the right part of the diagram. Such puzzling behavior is however limited to

a marginal part of the data as it turns out from the histogram. Despite it is di�cult to provide the right

causal explanation, we suggest that, due to the greater number of defaults and losses with high heterogeneity,

similarity may be higher in periods around banks' default.
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Figure 6: Distribution of degree, net worth, and Jaccard similarity under low (red) and high (blue) heterogeneity.

The ccdfs are in log-log scale.

Figures 7 and 8 visualize the structures of interbank and credit networks. These are directed and dynamic

graphs accounting for all the transactions that occurred throughout two representative simulations for low

and high heterogeneity. The size of nodes is adjusted for the weighted degree of banks (or �rms), so that the

largest nodes depict the biggest interbank borrowers in Figures 7a and 7b, and those banks most involved in

lending to �rms in Figures 8a and 8c. The di�erence between high and low heterogeneity is visually clear for

banks, whereas the variation in �rms' borrowing is negligible (Figures 8b, 8d).

A visual inspection of the interbank network under low heterogeneity reveals immediately that all banks are

similar in terms of borrowing, in contrast with the heterogeneous case. Network statistics in Table 5 con�rm

the visual analysis: the homogeneous network is denser and more clustered with low maximum centrality.

On the other side, the heterogeneous graph is less interconnected, shows a weak disassortative mixing, and a

higher maximum betweenness centrality: few banks borrow most interbank liquidity.

The sub�gures (a) to (d) in Figure 8 highlight lending to �rms (left) and borrowing from banks (right). While

�rms' borrowing does not show a wide variation, the variance in bank lending changes remarkably from low

(CV < 1) to high (CV > 1). In other words, lending to �rms is operated by a few big banks with high

heterogeneity (Figure 8c) At the same time, the total intermediated credit is similar in the two cases.

In summary, we check that the assumptions about network structures in Section 2.2 produce the desired

outcomes when applied to the full model. We �nd that they lead to di�erent degree distributions, dissimilar

portfolios, and net worth of banks. Moreover, network inspection con�rms that two groups of banks emerge

under high heterogeneity, one specialized in lending to �rms and the other in interbank lending. In addition

to these results, cross-correlations between network and market variables are in A.3.

(a) low (b) high

Figure 7: Interbank network under low (a) and high (b) heterogeneity at the end of a representative simulation.

The size of nodes represents weighted in-degree (number of incoming links weighted by the amount borrowed). The

thickness of edges shows the link weight in terms of borrowing between pairs of nodes. The network diagrams are

plotted with Gephi using the Force Atlas algorithm.

16



Statistics Low heterogeneity (a) High heterogeneity (b)

Average degree 24.00 11.80
Average path length 1.04 1.29
Clustering 0.96 0.62
Density 0.96 0.49
Assortativity -0.06 -0.12
Betweenness centrality (max) 1.26 19.37

Table 5: Descriptive network statistics for sub�gures 7b and 7a.

(a) low (b) low

(c) high (d) high

Figure 8: Bimodal �rms-banks network of the credit market. Banks are the blue nodes, �rms are the red nodes. The

size of the blue nodes shows the weighted out-degree (number of outgoing links weighted by the amount lent) of banks

under low (a) and high heterogeneity (c). In the same way, the size of red nodes shows the weighted in-degree of �rms

(number of incoming links weighted by the amount borrowed) under low (b) and high heterogeneity (d). The network

diagrams are plotted with Gephi using the Geo Layout.

Statistics Low heterogeneity (a, b) High heterogeneity (c, d)

CV out-degree (banks' lend-
ing)

0.462 1.487

CV in-degree (�rms' borrow-
ing)

1.102 1.211

Avg ratio 1.003 1
Density 0.061 0.048

Table 6: Descriptive network statistics are reported in Table (c), where CV are the coe�cients of variation of

weighted out (in)-degrees, Avg ratio is the ratio of average weighted-degree to the average weighted-degree in the

high heterogeneity case (Avg ratio for out and in-weighted degrees is identical). Avg ratio close to one under low

heterogeneity means that the total credit lent by banks to �rms is similar in the two cases.
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3.2. Analysis of tails

The materialization of systemic-risk triggered by illiquidity or default cascades may give rise to high variability

in the data generated by the model. Here we assess the e�ect of SCBs in reducing the outliers by looking at

the tails of the distribution. Moreover, the whole data distribution gives an idea about the overall working

of SCBs.

Figures 9 and 10 display the ccdfs in log-log plots. We add two vertical lines referred to the benchmark

case (RWA) to mark the median (green line) and the boundary below which data are considered outliers

(red line), namely points where X > q3 + 1.5(q3 − q1). Let us consider the results in the heterogeneous

case �rst. When SCBs are activated, the ccdfs tend to stay below the benchmark for defaults and above

for losses.6 Moving towards the right-bottom corner, the number of available data points becomes scant, so

the distribution of defaults becomes less accurate. The ccdfs of EBA and VUL for liquidation defaults and

losses display better performance than RWA. In sum, we observe that the adoption of EBA and VUL in

highly heterogeneous systems is bene�cial to reduce the risk of illiquidity and mitigate the materialization

of extreme events. Conversely, the e�ect of IMP is ambiguous in the tails and bene�cial in the rest of the

distribution.

We now turn to the analysis under low heterogeneity. Overall, the magnitude of defaults and losses, as

measured on the horizontal axis, is lower than under high heterogeneity. The distributions of interbank and

liquidation defaults show that EBA and VUL are no longer e�ective. This result is con�rmed by the inspection

of the corresponding sub�gures for losses. IMP lowers the right tail of interbank defaults and losses, but the

ccdfs for liquidations are close to the benchmark. These observations suggest that the advantage of imposing

additional capital surcharges is limited under low heterogeneity, where IMP is marginally superior to EBA

and VUL. For what concerns the distress transmitted by �rms, results follow those under high heterogeneity

though the distance between curves shrinks.

The study of tails shows that SCBs improve systemic stability under high heterogeneity but o�er limited

gains when the system tends to homogeneity. Deeper scrutiny reveals that some types of bu�ers work better

or worse than others. The best results in the heterogeneous and homogeneous worlds are achieved by EBA

and IMP, respectively. Also, in view of the results in Figure 11, there is little evidence about any deleterious

e�ects of SCBs.
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Figure 9: Ccdf of banks' defaults under high and low heterogeneity in log-log scale. The red vertical line is the

limit beyond which the data are classi�ed as outliers in the benchmark distribution (RWA), namely those points

X > q3 + 1.5(q3 − q1). The vertical green line is the median of the benchmark distribution (RWA). The ccdfs are

computed on the sum of defaults per Monte Carlo simulation.

6Losses from the �rms' sector are connected to the total amount of credit and follow the logic of the model: SCBs reduce
the defaults of banks from loans thus the credit supply of banks is not impaired as often as in the benchmark case. It ensures
credit to �rms, which can borrow more and rely less on their net worth to �nance production. On the other hand, �rms' leverage
increases, and so the losses of banks.
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Figure 10: Ccdf of banks' losses under high and low heterogeneity in log-log scale. The red vertical line is the

limit beyond which the data are classi�ed outliers in the benchmark distribution (RWA), namely those points X >

q3+1.5(q3− q1). The vertical green line is the median of the benchmark distribution (RWA). The ccdfs are computed

on the sum of losses per Monte Carlo simulation.

3.3. Reduction of extreme events

We aim to understand the e�ects of SCBs on �nancial stability. Therefore, here we compare the e�ectiveness

of SCBs for their ability to stabilize the system by looking at large crises and systemic-events. Large crises

can arise in model simulations, although they are not visible at every run. Then we look at the frequency of

large events in our sample of Monte-Carlo simulations and visualize the results in Figure 11. We specify a

de�nition of systemic event that adapt to our model and excludes confounding factors: We de�ne �systemic

event� those episodes in which the three following conditions are met together: (i) at least 25% of banks

are defaulted or inactive waiting for recapitalization; (ii) there is a default cascade via the interbank market

involving at least 15% of banks in a single unit of time; (iii) the losses of the banking sector are greater or

equal than 5% of the maximum total equity throughout the simulation. Moreover, we account for defaults

and losses in the ten periods following the systemic event to capture the distress that propagates indirectly

to the balance sheets of agents following the model dynamics. The following abbreviations are employed

henceforth: RWA is the benchmark case where banks are only required to have a capital greater or equal

than a fraction of their risk-weighted assets. EBA refers to capital bu�ers for O-SII, IMP refers to bu�ers

based on DebtRank impact, and V UL refers to those based on DebtRank vulnerability. Details about capital

bu�ers are in Section 2.5. High and low heterogeneity are denoted respectively by h and l.

The �rst sub�gure accounts for the frequency of systemic events. The �rst fact that stands out is the

di�erence between high and low. The frequency of systemic events is much higher under heterogeneity. The

second observation is about the e�ects of SCBs: they always decrease the frequency when heterogeneity is

high compared to the benchmark, but the ranking is reversed when the system tends to homogeneity. IMP-l

marginally improves �nancial stability, while EBA-l and VUL-l are ine�ective. The last sub�gure reports

the frequency of those events when at least 25% of banks are in defaults at the same time, excluding those

that are inactive waiting for recapitalization. The chart builds on a di�erent and less strict criterion than

the �rst one for systemic events, thus works as a control for the other results. The bars ranking is similar to

the �rst sub�gure and follows approximately the patterns displayed in the tails of distributions in Figure 9

for liquidation and interbank defaults.
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Figure 11: Frequency of systemic events (left) and default probability of banks (right) for high (light blue) and low

(light red) heterogeneity. The bar chart on the right shows the frequency of events when at least 25% of banks go

into default simultaneously. Error bars represent standard deviation.

A further comparison of SCBs is shown in Figure 12 that displays the number of simultaneous defaults

in the interbank market. These are de�ned as those events when at least 15% of banks go bankrupt in a

single unit of time due to interbank contagion. If SCBs are e�ective, we expect that they decrease the default

probability of the most systemic banks, which subsequently reduces interbank contagion. The error bars in

Figure 12 are consistent with the results from Figure 11: EBA reduces the length of simultaneous defaults

the most under high heterogeneity but is the worst policy under low heterogeneity. IMP does the opposite.

%
 b

an
ks

Simultaneous ib defaults (high) Simultaneous ib defaults (low)

Figure 12: Average and standard error of the number of banks involved in simultaneous interbank defaults conditional

on the default of at least 15% of banks at the same time. High heterogeneity (left, blue), low heterogeneity (right,

red).

3.4. Regression analysis

In Table 7 we conduct simple least square regressions to disentangle the e�ect of banks' characteristics on the

working of SCBs. We consider pooled cross-sectional data of individual banks generated in six simulations,

one for each SCB under high and low heterogeneity. The response variable is the score deriving from the

systemic-risk assessment of banks (see Section 2.5). The regressors include balance-sheet variables (net worth,

deposits, loans to �rms, interbank lending and borrowing) and network variables (number of incoming and

outgoing links in the interbank network, number of links to �rms in the credit market). For conducting the

comparison, we normalize all scores between 0 and 100. It is worth noticing that scores are lower (Figure

5 and Table 8) shifting from high to low heterogeneity. So, normalization results in a greater magnitude of

several coe�cients under low heterogeneity. Taking it into account, the following analysis is general enough

to apply in both cases. Anyway, the magnitude of the coe�cients could be only compared either within high

or low heterogeneity. Moreover, the objective of this section is not to conduct a precise econometric analysis

of the data but to have a broad indication of what is most relevant for scores.
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EBA-h IMP-h VUL-h EBA-l IMP-l VUL-l

Constant 0.305
(0.309)

8.894∗∗∗

(0.776)
8.634∗∗∗

(0.487)
-1.229∗∗∗

(0.457)
4.080∗∗∗

(0.474)
5.134∗∗∗

(0.290)

Net worth 0.042∗∗∗

(0.014)
0.086∗∗∗

(0.028)
-0.244∗∗∗

(0.018)
0.069∗∗∗

(0.025)
-0.056∗∗

(0.023)
-0.283∗∗∗

(0.018)

Deposits 0.022∗∗∗

(0.002)
0.079∗∗∗

(0.006)
0.009∗∗∗

(0.003)
0.019∗∗∗

(0.002)
0.095∗∗∗

(0.004)
0.001
(0.001)

Loans to �rmsa - - - 0.082∗∗∗

(0.005)
0.052∗∗∗

(0.009)
0.096∗∗∗

(0.005)

Ib borrowing 0.052∗∗∗

(0.003)
0.085∗∗∗

(0.005)
0.059∗∗∗

(0.004)
0.126∗∗∗

(0.009)
0.142∗∗∗

(0.008)
0.019∗∗∗

(0.006)

Ib lending 0.039∗∗∗

(0.002)
0.004
(0.005)

0.125∗∗∗

(0.004)
0.146∗∗∗

(0.006)
0.028∗∗∗

(0.006)
0.158∗∗∗

(0.007)

Ib in-degree -0.096
(0.114)

1.927∗∗∗

(0.237)
1.110∗∗∗

(0.179)
0.734∗∗∗

(0.245)
1.286∗∗∗

(0.232)
0.228
(0.146)

Ib out-degree -0.197∗∗

(0.086)
1.967∗∗∗

(0.262)
0.980∗∗∗

(0.193)
0.208
(0.185)

2.277∗∗∗

(0.207)
1.359∗∗∗

(0.163)

Credit
out-degree

0.442∗∗∗

(0.026)
-0.220∗∗∗

(0.020)
0.000
(0.015)

0.684∗∗∗

(0.054)
-0.282∗∗∗

(0.036)
-0.046∗∗

(0.020)

R-squared 0.850 0.410 0.456 0.552 0.619 0.546

No. observations 10051 10188 10048 12346 12225 12185

Table 7: OLS regression results. Response variables are the systemic-risk scores. All scores are normalized between 0

and 100. HAC standard errors are reported in parenthesis. *, **, and *** indicate signi�cance at the 90%, 95%, and

99% level, respectively.
a Omitted due to multicollinearity.

The previous picture di�ers for the IMP score. The regression points out that the score captures banks'

impact on the �nancial network in terms of interconnectedness and liabilities. Every additional incoming or

outgoing interbank link contributes to an increase in the score because a default would a�ect either interbank

creditors or depositors. By the same token, deposits show a larger coe�cient than in other regressions.

Banks' net worth is presumably related to the score by the correlation with deposits and loans to �rms.

Remarkably, the credit out-degree coe�cient suggests that lending concentration increases the score of IMP.

In other words, ceteris paribus risk diversi�cation is rewarded. Turning to VUL, the factors a�ecting its score

are not surprising: the coe�cients of net worth, lending banks, and interbank borrowing (re�ecting loans to

�rms ) clearly relate to vulnerability.

To understand the change in the e�ectiveness of SCBs between the two types of banking networks, it

is essential to examine the cross-correlations of the regressors in Tables 9 and 10. The major change can

be observed in the correlation between loans to �rms and interbank borrowing. Moving towards a more

homogeneous network, liquidity is distributed more uniformly across banks. It results that banks may lend

to �rms without resorting to the interbank market. Therefore, regulating banks based on asset size (EBA),

especially loans, becomes less e�ective. IMP turns into the best policy since by explicitly accounting for

liabilities and interconnections, it identi�es and protects the most important nodes in the network.

To sum-up, the regression analysis shows that all scores re�ect the design of the systemic-risk assessment

methodology. The EBA score is sensitive to the elements on the banks' balance-sheet, in particular lending.

The score of IMP accounts jointly for banks' interconnectedness and liabilities. The net worth and exposures

of banks are the factors that determine vulnerability and mostly a�ect the score of VUL. Furthermore,

switching from high to low heterogeneity changes the distribution of liquidity and the e�ectiveness of SCBs.
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mean median std min max

High
heterogeneity
Score EBA-h 410.304 211.835 534.400 0.157 4538.475
Score IMP-h 0.067 0.046 0.064 0.000 0.355
Score VUL-h 0.080 0.045 0.095 0.000 0.823
Net worth 27.495 23.426 16.639 0.000 112.654
Deposits 80.565 35.481 107.542 0.026 823.184
Loans to �rms 49.746 9.406 84.235 0.000 613.495
Ib borrowing 36.390 0.000 80.323 0.000 762.513
Ib lending 36.385 14.343 56.709 0.000 577.230
Ib in-degree 0.880 0.000 1.563 0.000 13.000
Ib out-degree 0.880 1.000 0.889 0.000 7.000
Credit
out-degree

9.973 3.000 15.155 0.000 90.000

Low
heterogeneity
Score EBA-l 399.912 290.621 362.138 2.751 3468.613
Score IMP-l 0.047 0.029 0.049 0.000 0.348
Score VUL-l 0.044 0.022 0.061 0.000 0.614
Net worth 21.340 19.252 11.362 0.000 82.493
Deposits 88.425 63.303 79.574 0.548 675.903
Loans to �rms 45.292 27.823 51.911 0.000 445.944
Ib borrowing 13.400 0.000 37.545 0.000 476.611
Ib lending 13.400 0.000 28.827 0.000 467.053
Ib in-degree 0.461 0.000 1.001 0.000 10.000
Ib out-degree 0.461 0.000 0.713 0.000 6.000
Credit
out-degree

8.772 8.000 4.874 0.000 30.000

Table 8: Summary statistics.

nwb dep loan ibb ibl ib in ib out cred
out

nwb 1.000 0.466 0.397 0.242 0.357 0.162 0.139 0.269
dep 0.466 1.000 -0.087 -0.171 0.591 -0.247 0.378 -0.228
loan 0.397 -0.087 1.000 0.917 -0.232 0.780 -0.332 0.673
ibb 0.242 -0.171 0.917 1.000 -0.214 0.822 -0.314 0.604
ibl 0.357 0.591 -0.232 -0.214 1.000 -0.279 0.633 -0.308
ib in 0.162 -0.247 0.780 0.822 -0.279 1.000 -0.404 0.637
ib out 0.139 0.378 -0.332 -0.314 0.633 -0.404 1.000 -0.427
cred
out

0.269 -0.228 0.673 0.604 -0.308 0.637 -0.427 1.000

Table 9: Cross correlations under high heterogeneity. Net worth (nwb), deposits (dep), loans to �rms (loan), interbank

borrowing (ibb), interbank lending (ibl), interbank in-degree (ib in), interbank out-degree (ib out), credit out-degree

(cred out).

nwb dep loan ibb ibl ib in ib out cred
out

nwb 1.000 0.387 0.653 0.234 0.248 0.193 0.177 0.125
dep 0.387 1.000 0.265 -0.146 0.313 -0.205 0.206 -0.015
loan 0.653 0.265 1.000 0.643 0.099 0.565 0.081 0.249
ibb 0.234 -0.146 0.643 1.000 -0.009 0.804 -0.040 0.110
ibl 0.248 0.313 0.099 -0.009 1.000 -0.038 0.709 -0.128
ib in 0.193 -0.205 0.565 0.804 -0.038 1.000 -0.062 0.133
ib out 0.177 0.206 0.081 -0.040 0.709 -0.062 1.000 -0.156
cred
out

0.125 -0.015 0.249 0.110 -0.128 0.133 -0.156 1.000

Table 10: Cross correlations under low heterogeneity. Net worth (nwb), deposits (dep), loans to �rms (loan), interbank

borrowing (ibb), interbank lending (ibl), interbank in-degree (ib in), interbank out-degree (ib out), credit out-degree

(cred out).
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3.5. E�ects of systemic capital bu�ers when no crises occur

In this section we compare SCBs when no crises occur. To operate the comparison we use boxplots7 and

ignore those simulations in which systemic events, as de�ned in Section 3.3, took place.

Output gap and credit We start from the analysis of macroeconomic variables. The distribution of the

output gap and output volatility is illustrated in Figure 13. The output gap is de�ned as the deviation of

aggregate supply from the maximum potential output, which under our assumptions is constant (further

details in A.1). Output volatility is computed as the standard deviation of output growth rate. Boxplots in

Figure 13 do not exhibit any noteworthy di�erence in the medians. This result could in principle support

the adoption of SCBs because they do not entail output losses with respect to the benchmark. The volatility

of output shows a downward shift from high to low heterogeneity, hence the system is more stable when the

banking networks tend towards homogeneity.

Figure 13: Output gap (left) and output volatility (right) for high (blue) and low (red) heterogeneity. The output

gap is the ratio of the deviation of actual output to potential output. Output volatility is computed as the standard

deviation of output growth rate. Markers report the mean, vertical bars are standard deviation.

We look at credit to �rms and interbank lending in Figure 14. There is a weak increase in both types

of lending with respect to the benchmark, however the clearest change is lower interbank loans under low

heterogeneity. This descends directly from the assumptions in Section 2.2 and is partly described by Figure

7a: by switching to the homogeneous world all banks have a similar number of depositors and lending

opportunities. Thus, the core-periphery structure of the interbank market reduces to a more homogeneous

one without big credit lenders that demand large amounts of liquidity. Analogously to the output gap,

the advantages produced by SCBs are small: the increases in credit to �rms or banks are around 1% the

benchmark. These gains are linked to the reduction in banks' defaults when macroprudential capital bu�ers

are activated (Figure 15). At �rst glance, macroprudential policy stabilizes the macroeconomic environment,

reducing defaults and consequently decreasing disruptions in total production.

Figure 14: Credit to �rms (left) and interbank lending (right) for high (blue) and low (red) heterogeneity. The y-axis

is in logarithmic scale.

7The horizontal lines within the boxes are sample medians, while the lines below and above the median represent �rst and
third quartiles. The black lines above and below the box are the whiskers, which extend from the nearest quartile to 1.5 times
the interquantile range. Observations above the top whisker (or below the bottom whisker) are outliers, represented by dots.
Notches display a con�dence interval above and below the median de�ned as

median∓ 1.57×
InterQuantileRange

√
n

.

If the notches of a pair of boxplots do not overlap, we can reject the null that the medians come from the same population with
95% con�dence, namely their di�erence is statistically signi�cant (McGill et al., 1978).
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Defaults and losses Defaults and losses are essential for assessing the e�ectiveness of SCBs, whose scope

is to mitigate systemic-risk. We have at our disposal a set of SCBs based on di�erent assessments of systemic-

risk. In principle, capital bu�ers based on measures re�ecting risk accurately should improve stability by

reducing systemic defaults. In opposition, here we look at their e�ect in normal times. Looking at defaults

from loans to �rms in Figure 15 it turns out that all types of SCBs beat the benchmark. The di�erence is

clearer for high heterogeneity. So, additional capital surcharges reduce defaults from systematic risk. We

can think that imposing extra bu�ers limits individual exposure to loans. It is more e�ective under high

heterogeneity when big lenders supply most of the credit. Despite this, we should look at the e�ectiveness of

reducing interbank contagion and liquidation defaults. Still, considering the quartiles of the distribution in

boxplots does not provide a clear picture, so we omit the related sub�gure and refer the reader to Figure 9.

in Section 3.2.

Figure 15: Total defaults of banks (left) and defaults from loans to �rms (right) for high (blue) and low (red)

heterogeneity.

Lastly, we consider losses. We have two sets of �gures, one with the value of losses (Figure 16) and another

with losses to equity of banks (Figure 17). The second set is a control for the former to make sure that losses

are comparable in every scenario. The two sets present similar results except that the equity of banks is

lower under homogeneity, as can be veri�ed in Figure 6. This especially a�ects losses from loans to �rms,

whose ratio to equity turns out to be greater in the homogeneous case. Therefore, banks are more exposed

to �rms under low network heterogeneity. In exchange, they are less exposed to other types of losses. This

suggests that systemic-risk connected to liquidity crises is weaker under low heterogeneity even if SCBs are

not activated. Finally, we see that losses from loans to �rms are higher than the benchmark when SCBs are

put in place (Figure 16). The model construction is responsible for this behavior: lowered defaults from loans

stabilize banks' equity and thus improve �rms' access to credit, but at the same time raise the exposure of

banks to the �rms' sector and losses (see footnote 6).

Figure 16: Total losses of banks (top-right), losses from loans to �rms (top-left), interbank lending, (bottom-right),

and asset liquidation (bottom-left) for high (blue) and low (red) heterogeneity.
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Figure 17: Total losses to equity of banks (top-right), losses to equity from loans to �rms (top-left), interbank losses

(bottom-right), and asset liquidation (bottom-left) for high (blue) and low (red) heterogeneity.

3.6. Violations of capital bu�ers

Some SBCs may work worse than others since enforcing is more di�cult for banks. So, we study the violations

of capital bu�ers to exclude that e�ectiveness depends on feasibility. This could unveil the criticalities of the

score-based mechanism and clarify if macroprudential requirements are manageable for banks. We start from

the distribution of capital bu�ers in each bracket by looking at the histograms in Figure 18. The relative

frequency in every group is decreasing with successive brackets. This can be inferred also from the distribution

of systemic-risk scores in Figure 5, which helps to explain why the vertical distance between groups is smaller

in the �low� case. Moreover, the EBA tends to be distributed more evenly on the domain than other types,

albeit all show positive skewness. Hence, in the majority of cases, no capital bu�ers are imposed. In other

cases, frequencies are inversely proportional to the bu�er values. Figure 19 reports �violations ratio�, i.e.

the ratio of total number of violations to the times a speci�c bu�er is required. A violation occurs when

the equity to RWA ratio of a bank is lower than the bu�er required by the macroprudential authority. The

violations ratio under high heterogeneity is between 0 and 5% circa, while under low heterogeneity it is

roughly 10 times lower. In addition, it increases with the values on the horizontal axis, so that banks fail

more often to raise capital for higher bu�ers. However, moving from 2.5% to 3% we observe a frequency

reduction for EBA and IMP, while it keeps increasing for VUL. An explanation for this dissimilarity refers

to the VUL method of systemic-risk assessment. It gives higher scores to more vulnerable banks, which may

not comply with regulatory requirements simply because the value of their assets is low (they are neither

credit nor interbank lenders). Recall that in our model banks comply with capital requirements by retaining

dividends or decreasing their RWA. Consequently, if their assets are scant, it is more di�cult to achieve the

target capital ratio. On the other hand, the scores assigned by EBA and IMP account for impact, that is

positively correlated to asset size. Finally, we analyze the violations ratios to quantify the deviations from

the required capital bu�ers. From Figure 19 it turns out that most violations occur for SCBs above 2%,

but the distance between the actual equity:RWA ratio and the required bu�er is unknown. The heatmaps

in Figure 24 show that violations distribute foremost at short distances from the required bu�er, decreasing

as the distance increases. Approximately, circa one-half of the violations are distant between 0 and 3% from

the required capital bu�ers.

The violation analysis suggests that banks successfully adapt their behavior to comply with regulation

most of the time (at least 95% success rate with high heterogeneity and 99% with homogeneity). Violations

occur at the upper values of bu�ers, but the extent of violations is limited to short distances in the majority

of cases. Total violations and ratios are lower in the homogeneous world. Overall, these �ndings point out

that the e�ectiveness of capital bu�ers cannot be related to their feasibility.
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Figure 18: Frequency of systemic capital bu�ers per bracket under high (left) and low (right) heterogeneity. The

systemic risk bu�ers range between 0.01 and 0.03. At 0 only minimum capital requirements apply.
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Figure 19: Violations ratio of systemic capital bu�ers per bracket under high (left) and low (right) heterogeneity. The

systemic risk bu�ers range between 0.01 and 0.03. At 0 only minimum capital requirements apply.

Finally, to have an idea about the additional capital requested by SCBs, we look at the ratio between

additional capital surcharges of the top 20% banks to total additional capital. For each SCB, we take the top

20% of banks sorted by descending score. The additional capital is proportional to the net worth of banks, on

the compliance with prudential requirements, and the distribution of bu�ers under each rule. So, it should

be read together with Figures 18 and 19. Figure 20 displays the results, from which it turns out that EBA-h

and IMP-l are the SCBs that require the highest capital to the top-scoring banks.
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Figure 20: Additional capital surcharges of top 20% banks to total additional capital surcharges. High (left) and low

(right) heterogeneity. Banks are classi�ed conditional on maximum scores per simulation under each type of capital

bu�er.
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4. Discussion

The research question stated in the introduction aims to assess the e�ectiveness of several types of macro-

prudential capital bu�ers when the banking system is more or less heterogeneous. In this respect, we discuss

the �ndings presented in Section 3.

We start from the degree of heterogeneity in the interbank market. Consistent with Iori et al. (2006),

we observe that a homogeneous banking system, and speci�cally interbank network, leads to more stability

compared to the heterogeneous case. The interbank market allows maximizing risk diversi�cation with

banks homogeneous in deposits. At the same time, the homogeneity of banks in terms of assets (loans to

�rms and interbank claims), lowers knock-out e�ects and therefore reduces the probability of contagion or

extreme events. As a matter of fact, the interbank network is denser under homogeneity. This improves the

availability of liquidity and reduces the variance in demand and supply, lowering the frequency of liquidity

crises. In contrast to a part of the literature (Beale et al., 2011; Wagner, 2008, among others), we do not

observe an increase in the probability of systemic crises from more risk diversi�cation of banks. Instead, the

bene�ts of risk-sharing seem to exceed the drawbacks of risk spreading. It is worth stressing that our model

only captures direct contagion since it lacks a common asset holding channel. Moreover, we cannot control

interbank connectivity, which is endogenously determined by the matching in credit and interbank markets.

Therefore we cannot observe how defaults and losses would react by changing it when the network tends to

homogeneity, as in Gai and Kapadia (2010).

Concerning capital bu�ers, they are e�ective if applied to the systemic-important banks. Financial stability

is improved if the most important banks are �rst identi�ed by systemic-risk assessment and then targeted

by capital bu�ers. It is helpful to recall two crucial concepts from the literature: banks' size and inter-

connectedness. The �rst identi�es banks that are too-big-to fail, the second those too-interconnected-to-fail.

Depending on the characteristics of the banking network, capital bu�ers built on these factors can be more or

less e�ective. A clarifying study is carried out in Caccioli et al. (2012), who compare contagion for banking

networks with random and power-law distributed sizes and degrees. In contrast, the construction of SCBs

in this paper relies on a less stark distinction between size and interconnectedness. In one case, EBA only

builds on balance-sheet indicators, which capture asset size and, to a lower extent, balance-sheet mediated

interconnectedness. On the other, IMP and VUL are not built on pure network centrality measures (e.g.

Katz, betweenness, eigenvector, etc.) but are obtained from a mixture of balance-sheet data and network

interlinkages. Besides, despite our assumptions in Section 2.2, the networks resulting from Monte Carlo

simulations are neither scale-free nor fully random but lean towards one extreme or another. Both types of

networks show heterogeneity to di�erent extents and the distribution of assets and degrees goes hand-in-hand

(see A.3).

In our model, the distribution of liquidity is the most relevant change for macroprudential policy when

moving from high to low heterogeneity. In addition, changing the degree of heterogeneity changes the charac-

teristics of the most important banks, and consequently how they should be identi�ed. When heterogeneity

is high, loans to �rms and interbank borrowing are strongly correlated because deposits are not enough for

large lenders to �nance loans to �rms. Thus, a policy that speci�cally targets large lenders protects creditors

from interbank defaults and, overall, reduces liquidity crises and contagion. We �nd that such a policy is rep-

resented best by EBA. The result seems consistent with those in Caccioli et al. since the greatest contribution

to EBA's score comes from banks' size in terms of total assets (see Table 4). One can think of EBA as the

bu�er that most re�ects asset size. When the system is less heterogeneous, the distribution of banks' deposits

is more uniform. It alters the behavior of banks and so the cross-correlation within banks' balance-sheets.

Now the most systemic banks cannot be identi�ed only based on asset size because the relationship between

lending to �rms and borrowing from banks is weaker. The availability of deposits to �nance lending reduces

the need to access to interbank funds. In this context, IMP turns out to be the most e�ective policy. It can

identify the most important nodes because it captures both interconnectedness and liabilities by explicitly

taking into account the network of interlocked balance-sheets. Conversely, when heterogeneity is high, IMP

cannot recognize large credit lenders as the most systemic banks. IMP ignores the size of the shocks that

could arise from the exposure of banks to the �rms' sector. Still, high exposure may trigger huge losses that

reverberate on connected nodes, although the hit banks are not the most interconnected nor the one with

the highest interbank liabilities. Looking from another angle, under high heterogeneity it is more likely that

those banks identi�ed by EBA as the most systemic go into default and trigger contagion. For what concerns

VUL, it is never the best policy in any scenario. Its score re�ects the vulnerability of banks conditional to the
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defaults of other banks in the network. So it does not account for the largest or most interconnected banks

but protects the most vulnerable ones. However, regulating all banks by their vulnerability also prevents the

default of the most systemic banks. This makes VUL the second-best policy under high heterogeneity.

Finally, the static network structure described in Section 2.2 successfully produces a dichotomy between

heterogeneity and homogeneity in key variables, among which banks' net worth, portfolio similarity, and

degree distribution. This is important because it shows how a heterogeneous core-periphery type interbank

network naturally arises when banks are di�erent in deposits and lending opportunities. In other words,

exogenous factors like geographical di�erentiation can contribute to shaping interbank topology and creating

communities as observed in (Iori et al., 2007) for the Italian interbank market.
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5. Conclusion

In this study we compare a set of macroprudential capital bu�ers in banking systems characterized by low

and high heterogeneity through a stylized macro-�nancial agent-based model in which liquidity crises may

arise.

The research shows that:

(i) Lowering heterogeneity in banks' size and network degree leads to more stability regardless of macro-

prudential policy. Capital bu�ers have a limited e�ect on �nancial stability compared to standard

capital requirements when heterogeneity is low.

(ii) Changing the heterogeneity of the banking network modi�es the criteria for the identi�cation of

systemic-important banks. Under low heterogeneity, banks rely less on interbank funds because the

distribution of deposits is more uniform. As a result, there is no a �rst-best policy valid for both types

of banking networks.

(iii) Imposing capital bu�ers to the largest banks in terms of asset size, speci�cally loans to �rms, is the

best policy under high heterogeneity. When shifting from high to low heterogeneity, such a policy is

ine�ective as the correlation between lending to �rms and interbank borrowing becomes weaker. Thus,

the best policy turns into targeting banks based jointly on their liabilities and interconnectedness.

While our model builds on a simpli�ed framework, it contributes to understanding the e�ects of macropru-

dential capital bu�ers when interbank contagion ampli�es �nancial distress. The �ndings suggest that the

macroprudential framework should account for the evolution of the �nancial system because regulatory tools

might become ine�ective shifting from high to low heterogeneous banking systems. Therefore, it is critical for

�nancial authorities to monitor the degree of heterogeneity and put in place a contingent �nancial regulation.

Some limitations apply. First and foremost, the model does not include a contagion channel from common

asset holding. Assets are not marked-to-market and in any case, banks do not invest in common assets. So,

when assets are liquidated, the balance sheets of other banks are not a�ected by a price change. This reduces

the e�ect of correlated exposures and joint failures which should be especially relevant under homogeneity.

Second, the model is intended as a proof of concept rather than a realistic one. In particular, the simple

structure of the balance sheets could limit the accuracy of systemic-risk assessments and thus weaken the

reach of systemic capital bu�ers.

To go past the limitations of results, the model could be extended to account for the common assets holding

contagion channel. Adding it would allow us to further explore the system under homogeneity. For instance,

we could explore the interaction of macroprudential tools and correlated portfolios or the systemic e�ects

of groups of banks whose individual relevance is negligible. Furthermore, the paper studies capital bu�ers

given two settings of network heterogeneity. Two substantial questions arising from this work are to check

if macroprudential capital bu�ers work to reduce the degree of heterogeneity in the banking system and

investigate under what conditions capital bu�ers might become harmful for �nancial stability.
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A. Appendix

A.1. The macroeconomic model

The model underlying the simulations traces closely Gurgone et al. (2018). However, since the focus of the paper is on
macroprudential policy and the �nancial sector we detach the description of the macroeconomic framework from Section 2 and
outline the principal characteristics below. We provide a brief description of the macro model and stress the di�erences where
the original one was amended (Table 11).

Timing The sequence of events in the model is described below.

1. The interbank market opens: demand and supply are determined respectively by the di�erence between a bank's expected
liquidity target and its actual liquidity.

2. Banks compute their maximum credit supply subject to regulatory constraints. Firms decide their planned hiring and
production levels and use these to compute their credit demand.

3. The credit market opens: each bank computes the interest rate charged to each possible borrower. Firms enter the market
and seek out potential lenders.

4. The labor market operates and production takes place. Firms compute their labor demand in line with their planned
output levels. They hire workers on the basis of a frictional matching process and all employed workers are paid the same
wage, which is set each period by a union.

5. Households spend their consumption budget, starting from sellers that charge lower prices.

6. Firms and banks that obtain positive pro�ts pay taxes and distribute dividends. They update the dividend share.

7. Banks liquidate assets if they fall short of their liquidity bu�er.

8. A loop cycle accounts for potential cascades of bankruptcies in the �rms and banks sectors.

9. The credit and the interbank markets close. Firms and banks settle their obligations.

10. The government collects tax revenues and issues bills, which are bought by the Central Bank. Unions update their
required wage rate following a Phillips rule.

11. Shareholders replace bankrupt �rms with newborn start-ups and/or recapitalize banks.

Households There are NH households that work, consume, and save. All households supply equal amounts of labor and
own shares in banks and �rms. Departing from the original model, shareholders are not equally distributed but are assigned to
banks and �rms according to a �xed shareholders' network (see Section 2.2). Households' wealth is the value of deposits kept
in a bank account, while shares are not explicitly valued because there is no secondary market. Households receive their income
from wages net of taxes, interest on deposits, dividends, and �scal transfers. The variation in deposits between two periods is
given by the sum of total income minus consumption. Households plan to consume a fraction c1 of their current labor income
and a fraction c2 of their wealth. If the consumption budget cannot be achieved due to rationing on the goods market, the stock
of deposits is increased by involuntary saving. Each household supplies one unit of labor inelastically, which is remunerated at
the wage rate set by the union. It is adjusted sluggishly, based on an adaptive mechanism, in order to prevent the wage time
series from jumping up or down sharply. The adjustment takes into account a simple moving average of past realized values of
in�ation and unemployment.

Firms The business sector is made up of NF �rms that produce a homogeneous perishable good using labor only as input.
Firms' net worth is composed of the di�erence between deposits and loans from banks, as described in Table 2. We assume that
�rms anticipate the wage bill to hire workers so that carrying out production plans is subject to a cash-in-advance constraint.
Bank credit funds the di�erence between �nancial needs and net worth.

The sequence of �rms' actions in each period is summarized as follows:

• Set a target output level from which they calculate a labor target. The target output is computed adaptively based on
past sales. If sold output in the previous period is lower than production, the target is revised downwards, otherwise, it
is increased.

• Seek �nancing by borrowing if needed (subject to access to the credit market in that period) to meet the expected wage
bill. If internal funds are not enough to hire the workforce necessary to produce the target output at the current wage
rate, �rms enter the credit market. The matching mechanism with banks is described in 2.3.1.

• Hire workers until the wage bill has been met or no further employable workers can be found, then produce by means of
a linear production function.

• Set a price for their output and attempt to sell it. We assume that �rms have some monopolistic power arising from
consumers' search cost so that prices are higher than marginal costs. Unlike Gurgone et al. (2018), we assume that �rms
increase (decrease) the mark-up on the unitary cost of output if aggregate demand exceeds (fall behind) aggregate supply
(see also footnote 1). Unit costs include labor and credit cost.

• After production and pricing took place, the goods market opens and consumers spend their consumption budget.
• Firms' gross pro�ts equal sales revenues minus wage costs and interest charges. If pro�t is greater than zero the �rm pays
taxes and dividends, otherwise it absorbs the losses. Net pro�ts equal gross pro�ts minus taxes.

• If nwFj,t < 0 the �rm is insolvent at the end of the period and bankruptcy occurs. In that case it is re-capitalized by its

shareholders after timerF periods by a capital randomly chosen between 0.1 and 1.
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Government and Central Bank The working of the economy is made possible by transfers from the Government
to the household sector. High powered money is created by the Central Bank buying the bills issued by the Government. The
funds raised from this sale are transferred to the household sector's bank accounts. The �rm sector borrows funds from banks,
pays workers to produce, and then sells the goods to households. Firms then deposit revenues from sales in banks. After taxes
are collected the Government repays the one-period maturity bills, thus closing the monetary circuit.

The objective of the Government is to keep stationary the stock of public debt. Therefore, it operates a balanced budget
policy by adjusting the transfers to households G to keep the stock of bills constant.

∆Bt = 0 = rBBt +Gt − Tt −ΠCBt

⇒ Gt = max(Tt + ΠCBt − rBBt, 0) (22)

where B is the outstanding stock of government bills at time t, T are tax revenues and ΠCB are the pro�ts of the CB repatriated
to the government.

This formulation is di�erent from the original one, where the stock of bills could vary and G was �xed. The change is motivated
by the comparison of the model under di�erent policies. It requires that aggregate wealth given by the sum of net-worth of all
agents is kept constant and equal to the total amount of bills in the system. It is useful to recall that the model is stock-�ow
consistent, which means that by the aggregate balance sheet identity the negative net worth of the government is balanced by
the positive net worth of the private sectors so that aggregate net worth is zero.∑

i∈NH
nwHi,t +

∑
j∈NF

nwFj,t +
∑
h∈NB

nwBh,t + nwGt = 0

Furthermore, the present behavior of the Government avoids that the public debt grows inde�nitely due to a spiral driven by
interest on outstanding debt.

In addition to purchasing bills, the Central Bank pays an interest rate on reserves deposited by banks and earns the interest
on bills plus the pro�ts from the Special Agency. The corridor through which all lending to �rms and banks takes place is
determined by the Central Bank and is bounded by the rate paid on bank reserves and the rate at which banks can borrow
from the standing facility. As remarked in Section 2.3.2, we assumed that Central Bank does not provide emergency liquidity
to banks.

Di�erences GIG GIJ

Interbank and credit networks dynamic, heterogeneous (Sect. 2.2) static, homogeneous (Sect. 2.1.2)
Depositors and shareholders' networks static, heterogeneous (Sect. 2.2) static, homogeneous (Sect. 2.1.2)
Mark-up rule based on excess demand (Ad −As) based on the change in market-share

(∆y), Eq. (15)

µt =

{
µt−1(1 + 0.1) if Adt−1 > Ast−1

µt−1(1− 0.1) otherwise
µt = µt−1(1 + ∆yt−1)

Unitary cost of output includes the cost of borrowing does not include the cost of borrowing,
Eq. (17)

Money (bills) G adjusts to keep the stock of bills con-
stant, Eq. (22)

G is �xed, the stock of bills varies, eq
(5)

Lender of last resort no yes, Eq. (7)

Table 11: Main di�erences in the macroeconomic model of this paper (GIG) and that in Gurgone et al. (2018) (GIJ).
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A.2. DebtRank

DebtRank is a systemic-risk measure and an algorithm introduced in Battiston et al. (2012). It is conceived as a network
measure inspired by feedback centrality with �nancial institutions representing nodes. Distress propagates recursively from one
(or more) node to the other, potentially giving rise to more than one round of contagion. Despite DebtRank is a measure of
impact in a strict sense, the algorithm can also provide measures of vulnerability. We employ di�erential DebtRank (Bardoscia
et al., 2015), which is a generalization of the original DebtRank (Battiston et al., 2012) that improves the latter by allowing
agents to transmit distress more than once. Moreover, our formulation has similarities with Battiston et al. (2016), where it is
assumed a sequential process of distress propagation.

DebtRank takes as input the assets/equity of �rms and banks and the network of cross-exposures. It simulates the e�ects of
an initial shock on the equities of agents, whose distress is transmitted linearly from debtors to creditors until there are no new
losses. It gives back the values of the relative equity loss at the end of the simulation. The output of the algorithm permits to
compute the scores of banks in terms of impact and vulnerability.

The relative equity loss for banks (h) and �rms (f) is de�ned as the change in their net worth (respectively nwB , and nwF )
from τ = 0 to τ with respect to their initial net worth.

hi(τ) = min

[
nwBi (0)− nwBi (τ)

nwBi (0)

]

fj(τ) = min

[
nwFj (0)− nwFj (τ)

nwFj (0)

]

The impact of each bank on the rest of the system is denoted by g. It is the overall loss in equity produced by the default of
bank i, which includes equity of both �rms and banks. The score for bank z is obtained by averaging g over 500 iterations of
the algorithm.

gz =

∑
i 6=z hi,T nwBi,0 +

∑
j fj,T nwFj,0∑

i nw
B
i,0 +

∑
j nw

F
j,0

(23)

The vulnerability of banks is obtained from the same algorithm for impact, but rather than recording g we account for the
relative equity loss of banks, indicated by h after we force the default of other banks one by one. At the end of the 500 iterations
we have an array of dimension 500× (NB − 1) for each bank, whose entries are its relative equity loss. The average value of hi
is the vulnerability score for bank i.

hi,T ≡
nwBi,T − nw

B
i,0

nwBi,0
(24)

The algorithm is implemented as follows. We impose the default of banks z ∈ {1, . . . , NB} one at a time by setting hz(0) = 0.
The dynamics of the relative equity loss of other banks i ∈ {1, . . . , NB}, i 6= z and �rms j ∈ {1, . . . , NF } is described by the
sequence:8

1. Banks' losses on interbank loans:

hi(τ + 1) = min

1, hi(τ) +
∑
k∈K

Λbbik(1− ϕibk )(pk(τ)− pk(τ − 1))

 . (25)

2. Firms' losses on deposits:

fj(τ + 1) = min
[
1, fj(τ) + Λfbjk(1− ϕdepk )(pk(τ)− pk(τ − 1))

]
. (26)

3. Banks' losses on �rms' loans:

hi(τ + 1) = min

1, hi(τ) +
∑
j∈J

Λfbij (1− ϕloanj )(pj(τ)− pj(τ − 1))

 . (27)

Where pk is the default probability of debtor k and ϕi, i = {loan, ib, dep} is the recovery rate on loans, interbank loans and
deposits. Recovery rates are randomly distributed between 0.5 and 1. Default probabilities are linear in (25) and (27), so that
pk(τ) = hk(τ), while we assume that �rms' losses on deposits in (26) respond to the Fur�ne algorithm. In other words, the
distress propagates only in case of default of the debtor so that

pk(τ − 1) =

{
1 if hk(τ − 1) = 1

0 otherwise.

Λ is the exposures matrix that includes credit/debt relationships in the �rms-banks and interbank networks. It describes
potential losses over equity related to every asset at the beginning of the algorithm. All entries are obtained as the ratio of the

8Every step is executed until convergence, that is
∑
i hi(τ)− hi(τ − 1) = 0.
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liabilities of debtors and the net worth of the corresponding creditors. It is written as a block matrix, where Λbb refers to the
interbank market, Λbf refers to deposits, Λfb refers to �rm loans, and Λff is a matrix of zeros.

Λ =

[
Λbb Λbf

Λfb Λff

]
The matrix Λ is displayed below for NB = 2 banks and NF = 3 �rms. In our speci�cation there are no interlinkages in the
�rms sector, hence Λff = 0.

Λ =



0 Ib12
nwB2

D13

nwF1

D12

nwF2

D15

nwF3

Ib21
nwB1

0 D23

nwF1

D24

nwF2

D25

nwF3

L
f
31

nwB1

L
f
32

nwB2
0 0 0

L
f
41

nwB1

L
f
42

nwB2
0 0 0

L
f
51

nwB1

L
f
52

nwB2
0 0 0


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A.3. Cross-correlation and network statistics

(a) High heterogeneity

hb fb pseu
cred

dep credit deg
cred

ib lend ib out ib borr ib in size

hb 1.00 0.49 -0.40 0.47 -0.45 -0.44 0.59 0.59 -0.45 -0.50 -0.06
(1.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

fb 0.49 1.00 -0.34 0.91 -0.30 -0.34 0.85 0.64 -0.36 -0.44 0.30
(0.00) (1.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

pseu cred -0.40 -0.34 1.00 -0.32 0.86 0.95 -0.50 -0.78 0.93 0.92 0.49
(0.00) (0.00) (1.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

dep 0.47 0.91 -0.32 1.00 -0.26 -0.32 0.90 0.65 -0.34 -0.42 0.40
(0.00) (0.00) (0.00) (1.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

credit -0.45 -0.30 0.86 -0.26 1.00 0.95 -0.51 -0.78 0.97 0.95 0.63
(0.00) (0.00) (0.00) (0.00) (1.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

deg cred -0.44 -0.34 0.95 -0.32 0.95 1.00 -0.54 -0.81 0.98 0.96 0.54
(0.00) (0.00) (0.00) (0.00) (0.00) (1.00) (0.00) (0.00) (0.00) (0.00) (0.00)

ib lend 0.59 0.85 -0.50 0.90 -0.51 -0.54 1.00 0.87 -0.55 -0.64 0.21
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (1.00) (0.00) (0.00) (0.00) (0.00)

ib out 0.59 0.64 -0.78 0.65 -0.78 -0.81 0.87 1.00 -0.83 -0.89 -0.19
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (1.00) (0.00) (0.00) (0.00)

ib borr -0.45 -0.36 0.93 -0.34 0.97 0.98 -0.55 -0.83 1.00 0.98 0.57
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (1.00) (0.00) (0.00)

ib in -0.50 -0.44 0.92 -0.42 0.95 0.96 -0.64 -0.89 0.98 1.00 0.49
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (1.00) (0.00)

size -0.06 0.30 0.49 0.40 0.63 0.54 0.21 -0.19 0.57 0.49 1.00
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (1.00)

(b) Low heterogeneity

hb fb pseu
cred

dep credit deg
cred

ib lend ib out ib borr ib in size

hb 1.00 0.01 -0.03 0.02 -0.01 -0.01 0.03 0.03 -0.02 -0.03 0.01
(1.00) (0.58) (0.09) (0.34) (0.68) (0.56) (0.13) (0.16) (0.33) (0.14) (0.63)

fb 0.01 1.00 -0.03 0.57 0.33 0.13 0.50 0.43 -0.15 -0.31 0.37
(0.58) (1.00) (0.10) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

pseu cred -0.03 -0.03 1.00 -0.04 0.22 0.44 -0.16 -0.21 0.23 0.24 0.04
(0.09) (0.10) (1.00) (0.03) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.05)

dep 0.02 0.57 -0.04 1.00 0.53 0.16 0.83 0.67 -0.28 -0.45 0.60
(0.34) (0.00) (0.03) (1.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

credit -0.01 0.33 0.22 0.53 1.00 0.74 0.26 0.00 0.52 0.37 0.78
(0.68) (0.00) (0.00) (0.00) (1.00) (0.00) (0.00) (0.87) (0.00) (0.00) (0.00)

deg cred -0.01 0.13 0.44 0.16 0.74 1.00 -0.09 -0.29 0.57 0.54 0.39
(0.56) (0.00) (0.00) (0.00) (0.00) (1.00) (0.00) (0.00) (0.00) (0.00) (0.00)

ib lend 0.03 0.50 -0.16 0.83 0.26 -0.09 1.00 0.90 -0.48 -0.63 0.44
(0.13) (0.00) (0.00) (0.00) (0.00) (0.00) (1.00) (0.00) (0.00) (0.00) (0.00)

ib out 0.03 0.43 -0.21 0.67 0.00 -0.29 0.90 1.00 -0.68 -0.80 0.23
(0.16) (0.00) (0.00) (0.00) (0.87) (0.00) (0.00) (1.00) (0.00) (0.00) (0.00)

ib borr -0.02 -0.15 0.23 -0.28 0.52 0.57 -0.48 -0.68 1.00 0.95 0.25
(0.33) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (1.00) (0.00) (0.00)

ib in -0.03 -0.31 0.24 -0.45 0.37 0.54 -0.63 -0.80 0.95 1.00 0.08
(0.14) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (1.00) (0.00)

size 0.01 0.37 0.04 0.60 0.78 0.39 0.44 0.23 0.25 0.08 1.00
(0.63) (0.00) (0.05) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (1.00)

Table 12: Cross-correlation of selected variables for banks (p-values in parenthesis). Total degree in the depositors'

network (hb: households, fb: �rms), total degree in the pseudo-credit network (pseu cred), deposits (dep), credit to

�rms (credit), total degree in the credit network (deg cred), interbank lending (ib lend), out-degree in the interbank

network (ib out), interbank borrowing (ib borr), in-degree in the interbank network (ib in) size of banks (size) measured

by net worth. Correlations are computed on the cumulated values over 100 Monte Carlo simulations.
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fb dep hb dep pseudo-credit share credit ib

Avg degree 10.00 30.00 40.46 124.01 12.64 2.30
Median degree 7.00 24.00 4.00 62.00 5.00 2.00
Max degree 148.00 72.00 250.00 518.00 186.00 21.00

Table 13: Descriptive statistics of networks, high heterogeneity. Firms-banks deposits network (fb dep), households-

banks deposits network (hb dep), pseudo-credit network (pseudo-credit), banks' shareholders network (share), dynamic

credit network (credit), total in-degree in the interbank network (ib).

fb dep hb dep pseudo-credit share credit ib

Avg degree 10.00 30.00 46.17 138.36 8.35 1.72
Median degree 10.00 30.00 46.00 139.00 8.00 1.00
Max degree 47.00 21.00 63.00 198.00 39.00 14.00

Table 14: Descriptive statistics of networks, low heterogeneity. Firms-banks deposits network (fb dep), households-

banks deposits network (hb dep), pseudo-credit network (pseudo-credit), banks' shareholders network (share), dynamic

credit network (credit), total in-degree in the interbank network (ib).
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A.4. Main parameters and initialization

Table 15: Main parameters and initialization of variables.

Parameter Description Value

T Length of the simulation 800
NF Number of �rms 250
NH Number of households 750
NB Number of banks 25
α Labour productivity 2
W0 Initial wage rate 2
θ Tax rate 0.15
δ Dividend share 0.05
c1 Marginal propensity to consume out of income 0.8
c2 Marginal propensity to consume out of savings 0.2
rL Interest rate on reserves 0.005
rD Interest rate on deposits 0.005
rB Interest rate on bills 0.005
rH Interest rate on advances 0.1
rr Reserve coe�cient 0.1
vf Calibration parameter, Eq. (9) 2

uf Calibration parameter, Eq. (9) 1− 1+rD

1+rH

`∗ Calibration parameter, Eq. (9) 4
vb Calibration parameter, Eq. (17) 2

uib Calibration parameter, Eq. (17) 1− 1+rL

1+rH

lev∗ Calibration parameter, Eq. (17) λ/2
λ Minimum capital requirements 0.07
σ1 Sensitivity of the wage rate to unemployment 0.1
σ2 Sensitivity of the wage rate to hysteresis 0.05
u∗ Full-employment rate of unemployment 0.1
Fh Share of �rms observed on the goods market 0.25
µ Initial mark-up rate 0.01
d̄ Maximum duration of loans 3
d Minimum duration of loans 1
timerB Time between bankrupt and recapitalization of banks 10
timerF Time between bankrupt and recapitalization of �rms 2
Btag Bills 2000
ω1 Risk weight on loans to �rms 1
ω2 Risk weight on interbank loans 0.3
γ Mark-up adjustment on interbank bids 0.15
nτ number of borrowing attempts in the interbank market 5
φ Coe�cient on banks' recapitalization 1
fitnessd Fitness value, Eq. (1) U(0, 1)
linkmax Threshold number of links 40 ·NB

ad Calibration parameter, Eq. (1) 0.005 ∗NF

as Calibration parameter, Eq. (2) 0.002 ·
∑
outdegreec

DepH0 Initial deposits per household 0
DepF0 Initial deposits per �rm Y/lev0
Y Initial planned output per �rm αNH/NF

lev0 Initial leverage per �rm LogNorm(0.6881, 0.1)
nwF0 Initial net worth per �rm DepF0
Dep0 Initial deposits per bank (

∑
DepF0j +

∑
DepH0i)/N

B

nwB0 Initial net worth per bank 500
Nshb∑NB
i=1 N

sh
i

R0 Initial liquidity of banks DepB0 + nwB0
G0 Eq. (22) is modi�ed in the �rst 10 periods of the simulation until Btag is reached max(Btag + Tt + ΠCBt − rBBt, 0)
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A.5. Choice of score quantiles

In Section 2.5 we described the score-based system on which SCBs construct. Capital bu�ers are assigned to

banks depending on the risk bucket in which they are classi�ed. The buckets match selected quantiles of the

score distribution under either high or low heterogeneity. The �rst quantile (q0) corresponds to the median.

We assume that banks whose score is below the median are not subject to additional capital surcharges.

The other buckets are computed so that the distance between two consecutive quantiles is regulated by a

parameter a ∈ (0, 1].

Quantiles q are chosen following

qn = qn−1 + an−1d

where n = {0, . . . , N} is an index, d is a distance set to ensure that the qS = 1, i.e. d = med∑N−1
k=0 ak

, with

med = 0.5 the median. If a = 1, all quantiles are equidistant, while when 0 < a < 1 successive quantiles

have a decreasing distance. For instance, if N = 5 and a = 1/2: d ≈ 0.25, q0 = 0.5, q1 ≈ 0.75, q2 ≈ 0.88,

q3 ≈ 0.95, q4 ≈ 0.98.

Ideally, we want to choose the quantiles succession with decreasing distances so that only the most systemic

banks have the highest bu�ers. This is done by setting the parameter a. If a produces excessively uniform

intervals, capital bu�ers might be too mild for highly systemic banks and too strict for others. On the

other hand, if a yields too narrow intervals, capital bu�ers would be too loose for many banks, making SBC

meaningless. Therefore we conduct a sensitivity analysis to �nd the optimal value of a. Results are reported

in Figures 21, 22 and 23.
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Figure 21: Sensitivity analysis on the values of a for systemic-capital bu�ers based on EBA under high (blue circles)

and low (red squares) heterogeneity. Error bars represent standard deviation of the mean.
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Figure 22: Sensitivity analysis on the values of a for systemic-capital bu�ers based on IMP under high (blue circles)

and low (red squares) heterogeneity. Error bars represent standard deviation of the mean.
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Figure 23: Sensitivity analysis on the values of a for systemic-capital bu�ers based on VUL under high (blue circles)

and low (red squares) heterogeneity. Error bars represent standard deviation of the mean.
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A.6. Heatmaps: distances from required bu�ers
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Figure 24: The heatmaps display the share of violations of systemic capital bu�ers within each bracket. The colormap

and digits inside the cells report the number of violations to total violations within a bracket, so that the sum of

rows is equal to 1. Columns report the extra bu�er on top of the minimum capital requirements. A value of 0%

corresponds to a minimum capital requirement CET1
RWA

= 7%, a systemic capital bu�er of 1% corresponds to 7+1 = 8%

total capital bu�er, etc.. Rows are sorted by the deviation from required bu�ers in case of violation. For instance, in

the top-right corner, the systemic bu�er is 3% so that the total bu�er is given by the minimum 7% plus 3%. The row

value indicates that a bank fails to comply from 9 to 10% because its actual capital/RWA ratio is between 0% and

1%.
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