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Abstract

Within the seminal asset-pricing model by Brock and Hommes (1998), heterogeneous

boundedly rational agents choose between a fixed number of expectation rules to forecast

asset prices. However, agents’ heterogeneity is limited in the sense that they typically

switch between a representative technical and a representative fundamental expectation

rule. Here we generalize their framework by considering that all agents follow their own

time-varying technical and fundamental expectation rules. Estimating our model using

the method of simulated moments reveals that it is able to explain the statistical prop-

erties of the daily behavior of the S&P500 quite well. Moreover, our analysis reveals

that heterogeneity is not only a realistic model property but clearly helps to explain the

intricate dynamics of financial markets.

Keywords: Financial markets, stylized facts, agent-based models, technical and

fundamental analysis, heterogeneity and coordination

JEL classification: C63, D84, G15

1. Introduction

One of the most influential asset-pricing models with heterogeneous beliefs is the one by

Brock and Hommes (1998). In their setup, agents choose from a finite set of different

expectation rules to forecast prices and update their choices according to past realized

profits. Moreover, agents are boundedly rational in the sense that they tend to switch

toward forecasting strategies that have performed better in the past. A main result
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offered by their model is that complicated asset price dynamics may arise when the

intensity of choice to switch predictors is high. The evolutionary predictor selection

approach has also been used by Brock and Hommes (1997), who call the bifurcation

route to increasingly complex dynamics as the intensity of choice to switch forecasting

strategies increases a rational route to randomness.

Due to their power and great economic appeal, the models by Brock and Hommes

(1997, 1998) have been extended in various interesting directions. For instance, Brock

et al. (2009) introduce Arrow securities and demonstrate that adding more hedging

instruments may destabilize market dynamics. Similarly, Anufriev and Tuinstra (2013)

introduce short-selling constraints to analyze whether such a policy measure can stabilize

financial markets. In de Grauwe and Grimaldi (2006), the switching mechanism is

implemented in a non-linear exchange rate model and it is shown that important features

of exchange rates can be reproduced. Of course, many more extensions exist in the

literature. See Hommes (2013) for an excellent review. Note also that Boswijk et al.

(2003), using yearly S&P500 data, and Hommes and in’t Veld (2017), using quarterly

S&P500 data, provide strong empirical support for the approach by Brock and Hommes

(1998).

In the most elementary version of their model, all agents switch between a represen-

tative technical and a representative fundamental expectation rule. In reality, however,

agents’ expectations differ. Empirical studies, such as the ones by Ito (1990), MacDon-

ald and Marsh (1996), Menkhoff et al. (2009) or Jongen et al. (2012), explicitly stress

that expectations of professional forecasters are heterogeneous. Anufriev and Hommes

(2012), reinvestigating the laboratory experiments of Hommes et al. (2005, 2008), also

find that heterogeneous expectations are crucial to describe the boom-and-bust dynam-

ics of financial markets. However, forecasters’ behavior is not independent. A striking

and robust finding of the learning to forecast experiment by Hommes et al. (2005) is that

individuals tend to coordinate on using the same type of simple prediction strategies.

Furthermore, speculators are subject to herding behavior, which has already been docu-

mented in several empirical studies. Trueman (1994), for instance, analyzes forecasts by

financial analysts and reports that they tend to release forecasts similar to those released

by others. Welch (2000) also detects a positive influence of security analysts’ buy or sell
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recommendations on those of others. Note that a number of agent-based financial mar-

ket address speculators’ herding behavior, see, for instance, Kirman (1993), Lux (1995)

or Cont and Bouchaud (2000).

Against this background, we want to generalize the framework by Brock and Hommes

(1998) by considering that all agents follow their own time-varying technical and fun-

damental expectation rules, i.e. we assume that all agents have different expectations.

Since speculators do not trade independently from each other, we also assume that our

agents’ forecasts are correlated. Thus, the first goal of this contribution is to provide

an agent-based microfoundation of the model by Brock and Hommes (1998). Moreover,

we want to explore the extent to which the generalized model can explain the stylized

facts of financial markets. For this purpose, we estimate our model using the method

of simulated moments and find that our approach matches the daily behavior of the

S&P500 quite well. In this sense, our paper complements the studies by Boswijk et al.

(2003) and Hommes and in’t Veld (2017), who rely on yearly and quarterly S&P500

data, respectively. Finally, our analysis also reveals a novel explanation for the intricate

behavior of financial markets. As we will see, the simplicity of our approach allows

analytical insights that prove to be helpful in understanding how the model functions.

Related to our approach is the work by Brock et al. (2005) in which the model by

Brock and Hommes (1998) is generalized to an evolutionary system with many different

trader types. It is shown that the evolutionary dynamics can be approximated by the

notion of a large type limit (LTL) in the sense that all generic and persistent features of

an evolutionary system with many trader types, such as steady state, local bifurcations

or (quasi-)periodic dynamics, also occur in the LTL system. LeBaron et al. (1999)

develop an artificial stock market model in which a large number of interacting agents

can choose from many different forecasting rules. As it turns out, their model is able

to replicate certain stylized facts of stock markets. However, analytical tractability is

impossible in such a framework. Of course, many other agent-based financial market

models aim to explain the stylized facts of financial markets. For general surveys, see,

for example, LeBaron (2006), Chiarella et al. (2009) or Lux (2009).

The remainder of this paper is organized as follows. In Section 2, we extend the

seminal model by Brock and Hommes (1998) by assuming that all agents have heteroge-
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neous expectations. After presenting the setup of our model, we analyze its deterministic

skeleton in Section 3. In particular, we derive the dynamical system of our deterministic

model and analyze its steady states and their local asymptotic stability. In Section 4, we

estimate our model and demonstrate that the stochastic version of our model replicates

a number of important stylized facts of financial markets. Section 5 concludes our paper

and highlights a few avenues for future research.

2. Model setup

In this section, we consider the asset pricing model with heterogeneous boundedly ratio-

nal agents by Brock and Hommes (1998) and provide an agent-based micro-foundation

of their setup. They assume that agents know the risky asset’s fundamental value but

choose from a finite set of different beliefs to forecast its price. In their elementary

setup, these rules comprise a single fundamental and a single technical prediction rule.

Agents’ choices are updated in each period and depend on the past performance of the

forecasting rules. In contrast to Brock and Hommes (1998), we assume that each agent

follows his own fundamental and technical prediction rule, i.e. all agents have different

expectations. However, agents’ forecasts are correlated to some extent.

Let us turn to the details of the model. Agents can invest in a risk-free asset or

in a risky asset. The risk-free asset is in perfectly elastic supply and pays a fixed rate

of return r, while the risky asset is in zero net supply and pays an uncertain dividend

yt. By defining pt as the price per share (ex-dividend) of the risky asset at time t, the

wealth of agent i in period t+ 1 can be expressed as

W i
t+1 = (1 + r)W i

t + (pt+1 + yt+1 − (1 + r)pt)z
i
t, (1)

where zit represents the demand of agent i for the risky asset at time t. Since agents

are assumed to behave as myopic mean-variance maximizers, their demand for the risky

asset follows from

max
zit

{Eit [W i
t+1]− a

2
V it [W i

t+1]}, (2)

where Eit [W
i
t+1] and V it [W i

t+1] denote agent i’s beliefs about the conditional expectation

and conditional variance of his wealth in period t + 1 and parameter a represents a

4



uniform risk aversion coefficient. Moreover, it is assumed that beliefs about conditional

variance are constant and uniform across all agents, i.e. V it [pt+1 + yt+1− (1 + r)pt] = σ2

for all t and agents i.1 Solving (2) for zit then yields

zit =
Eit [pt+1 + yt+1 − (1 + r)pt]

aV it [pt+1 + yt+1 − (1 + r)pt]
=
Eit [pt+1 + yt+1 − (1 + r)pt]

aσ2
. (3)

As in Brock and Hommes (1998), the supply of shares per agent is denoted by zs and

is assumed to be fixed. Equilibrium of demand and supply can therefore be formalized

as
N∑
i=1

Eit [pt+1 + yt+1 − (1 + r)pt]

aσ2
= Nzs, (4)

where N denotes the total number of agents. By assuming a zero supply of outside

shares, i.e. zs = 0,2 the market equilibrium equation becomes

(1 + r)pt =

∑N
i=1E

i
t [pt+1 + yt+1]

N
. (5)

Before agents’ expectations about future prices and dividends are specified, let us

recall how the fundamental price is derived. When all agents have homogeneous expec-

tations, equation (5) simplifies to

(1 + r)pt = Et[pt+1 + yt+1], (6)

which can be used repeatedly. If a perfectly rational world is then assumed and the

transversality condition

lim
t→∞

Et[pt+k]

(1 + r)k
= 0 (7)

holds, the fundamental price can be determined by the discounted sum of expected

1Gaunersdorfer (2000) studies the case in which agents’ beliefs about conditional variances are time-
varying and observes, at least in the case of an IID dividend process, similar dynamics as in the original
model by Brock and Hommes (1998).

2Brock (1997) gives a justification for the simplifying case zs = 0 by introducing risk-adjusted
dividends.
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future dividends, i.e.

p∗t =

∞∑
k=1

Et[yt+k]

(1 + r)k
. (8)

Since Brock and Hommes (1998) consider an IID dividend process yt with mean E[yt] =

ȳ, the fundamental price is constant and given by

p∗ =

∞∑
k=1

ȳ

(1 + r)k
=
ȳ

r
. (9)

Expectations about future dividends are assumed to be identical across all agents

and correspond to the conditional expectation, i.e.

Eit [yt+1] = Et[yt+1] = ȳ, (10)

which also implies that all agents know the fundamental value p∗ that would prevail in

a perfectly rational world. However, the equilibrium price can then be expressed as

pt =
1

1 + r
(ȳ +

∑N
i=1E

i
t [pt+1]

N
). (11)

Brock and Hommes (1998) assume that expectations about future prices are hetero-

geneous and consider various types of belief. In this paper, we assume that agents choose

among two general types of forecasting rules, i.e. agents can either rely on technical or

on fundamental analysis to predict prices.3 This can be formalized by

Eit [pt+1] =

E
C,i
t [pt+1] if Iit = 1

EF,it [pt+1] if Iit = 0

, (12)

where EC,it [pt+1] and EF,it [pt+1] represent agent i’s price forecasts by using technical and

fundamental analysis, respectively. Accordingly, agent i chooses the technical (funda-

mental) prediction rule when the indicator function Iit takes the value 1 (0).

Technical analysis seeks to extrapolate past price trends into the future (Murphy

3Questionnaire studies by Menkhoff and Taylor (2007) and laboratory experiments by Hommes
(2011) strongly support this assumption.
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1999), while fundamentalists believe that asset prices revert towards their fundamental

value (Graham and Dodd 1951). Since there is a wide variety of technical and funda-

mental forecasting rules, we follow Westerhoff and Dieci (2006) and Franke (2010) and

capture at least part of the rules’ heterogeneity by adding noise components to the basic

principles. In contrast to their model setups, however, the noise affects agents on an

individual level, which implies that all agents have different expectations. Accordingly,

agent i’s technical and fundamental price forecasts consist of two components and are

specified by

EC,it [pt+1] = pt−1 + (1− g)(p∗ − pt−1) + pt−1σ
CεC,it (13)

and

EF,it [pt+1] = pt−1 + (1− v)(p∗ − pt−1) + pt−1σ
F εF,it , (14)

respectively. The first parts of (13) and (14) represent the core principles of the forecast-

ing rules, where g and v denote the coefficients of the two types of belief. As can be seen,

both forecasting rules predict the next period’s price by extrapolating past deviations

from the fundamental value. If agents follow the technical price forecast, they expect

the deviation of the stock price to increase. The higher parameter g > 1, the stronger

agents extrapolate the latest observed price deviation. Such a specification of the tech-

nical prediction rule is also used, amongst others, by Day and Huang (1990), Boswijk et

al. (2007), Hommes and in ’t Veld (2017) and Westerhoff and Franke (2012). Note that

this type of agents is referred to as chartists. If agents choose to be fundamentalists,

they believe that the next period’s price will move towards the fundamental value by a

factor v. Since 0 < v < 1, the expected mean reversion is higher the closer v is to 0.

The second parts of belief types (13) and (14) are the stochastic components, re-

flecting random digressions from the rules’ deterministic cores. Note that εC,it and εF,it

represent noise terms that are multiplied by standard deviations σC and σF . Although

all agents follow their own individual technical and fundamental forecasting rules, their

behavior is not independent. Supported by the empirical and experimental studies re-

ported in the introduction, we assume that agents coordinate and that they are subject

to herding behavior. We therefore follow Schmitt and Westerhoff (2016) and assume

that εCt = {εC,1t , εC,2t , ..., εC,Nt }′ and εFt = {εF,1t , εF,2t , ..., εF,Nt }′ are multivariate standard
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normally distributed random variables, i.e. εCt ∼ N (µC ,ΣC) and εFt ∼ N (µF ,ΣF ). Of

course, µC and µF are zero vectors. The variance-covariance matrices are given by

ΣC =



1 ρC . . . ρC

ρC 1
...

...
. . . ρC

ρC . . . ρC 1


(15)

and

ΣF =



1 ρF . . . ρF

ρF 1
...

...
. . . ρF

ρF . . . ρF 1


, (16)

where ρC and ρF denote the correlation coefficients of technical and fundamental random

signals, respectively. For instance, if ρC = ρF = 0, agents’ random signals are not

correlated, implying that their forecasts display maximal heterogeneity. Alternatively, if

ρC = ρF = 1, agents’ random signals are perfectly correlated. In this case, agents either

follow a representative stochastic technical prediction rule or a representative stochastic

fundamental trading rule, as is the case in Westerhoff and Dieci (2006) and Franke

(2010). As we will see in Section 4.2, the empirical analysis of our model reveals that

0 < ρC , ρF < 1, i.e. agents’ forecasting rules are partially correlated.

Agents switch between technical and fundamental analysis with respect to a certain

fitness measure. To be more precise, the probabilities that agents will choose one of the

two predictors are updated according to their past performance. The more successful the

forecasting rule, the more probable it is that agents will follow it. These probabilities are

determined by using the multinomial discrete choice model by Manski and McFadden

(1981). The probabilities that agent i will choose technical and fundamental analysis

are therefore given by

πC,it =
exp[βUC,it−1]

exp[βUC,it−1] + exp[βUF,it−1]
(17)
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and

πF,it =
exp[βUF,it−1]

exp[βUC,it−1] + exp[βUF,it−1]
, (18)

respectively, where UC,it−1 and UF,it−1 measure the fitness of the two forecasts in period t−1.

Parameter β is the intensity of choice and measures how quickly agents switch to the

more successful forecast. The higher the intensity of choice, the greater the probability

that agent i will opt for the strategy with the higher fitness. For β = 0, the probability

that agent i will use technical or fundamental analysis is 50 percent. For β =∞, agent i

will select with a probability of 100 percent the forecasting rule that had a higher fitness

in the previous period. Note that exp[βUC,it−1] + exp[βUF,it−1] is used as a normalization

factor to make sure that probabilities add up to 1. Hence, the probability that agent i

will opt for the fundamental (technical) forecast can also be expressed as πF,it = 1−πC,it

(πC,it = 1− πF,it ).

Fitness is determined by accumulated past profits.4 Since the realized excess return

of the risky asset over the risk-free asset can be computed as Rt = pt + yt− (1 + r)pt−1,

the performance of the two predictors can be defined by

UC,it = (1− µ)(pt + yt − (1 + r)pt−1)zC,it−1 + µUC,it−1 (19)

and

UF,it = (1− µ)(pt + yt − (1 + r)pt−1)zF,it−1 + µUF,it−1, (20)

where

zC,it−1 =
EC,it−1[pt] + ȳ − (1 + r)pt−1

aσ2
(21)

and

zF,it−1 =
EF,it−1[pt] + ȳ − (1 + r)pt−1

aσ2
(22)

express agent i’s technical and fundamental demand for the risky asset in the previous

period, respectively, and 0 ≤ µ < 1 is a memory that measures how strongly fitness

measures depend on current and past profits. For µ = 0, speculators have no memory

4Gaunersdorfer et al. (2008) provide an analysis of this model with risk-adjusted realized profits as
the fitness measure.
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and the performance of the two types of belief is given by the most recent profit that

would have been realized by agent i if he had chosen technical or fundamental analysis.

If µ increases, these fitness measures depend more strongly on the accumulated profits

that he would have realized in the past.5

A comment is in order at this point. In Brock and Hommes (1998), all agents

switch between a representative technical and a representative fundamental expectation

rule. As a result, all agents obtain identical trading profits for their two expectation

rules, implying that the fitness measures (19) and (20) as well as the discrete choice

probabilities (17) and (18) are equal across all agents. In reality, however, agents’

expectations differ. Agents’ demand functions, their profit opportunity, the rules’ past

performance and the discrete choice probabilities therefore also have an explicit agent-

specific nature in real financial markets. It is precisely this finding that forms the core

of our model.

Recall from (12) that agent i chooses the technical (fundamental) forecast if the

indicator function takes the value 1 (0), i.e. Iit = 1 (Iit = 0). Since the probability that

agent i will opt for technical (fundamental) analysis is represented by πC,it (πF,it ), the

indicator function can be formalized by

Iit =

1 with prob πC,it

0 with prob πF,it

, (23)

which is introduced to keep track of the number of agents that follow technical and

fundamental forecasting rules. These can now easily be defined by

NC
t =

N∑
i=1

Iit (24)

and

NF
t =

N∑
i=1

|Iit − 1|, (25)

5In Brock and Hommes (1998), the fundamental expectation rule is costly. They substantiate this
assumption by arguing that agents face constant per period information costs for obtaining the funda-
mental value. In our setup, both predictors rely on the fundamental value, which is why we abstain
from (differences in) information costs.
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respectively. Due to NC
t +NF

t = N , the relative numbers of chartists and fundamental-

ists are given by

WC
t =

NC
t

N
(26)

and

WF
t =

NF
t

N
, (27)

respectively. Of course, their weights add up to 1, which is why the relative number of

fundamentalists (chartists) can also be formalized by WF
t = 1−WC

t (WC
t = 1−WF

t ).

3. Analysis of the model’s deterministic skeleton

In this section, we study the underlying deterministic framework of our model. The

analytical insights we gain will prove useful when discussing how our stochastic model

functions in Section 4. In Section 3.1, we derive the dynamical system of our determin-

istic model and analyze its steady states and their local asymptotic stability in Section

3.2. In Section 3.3, we introduce a parameter setting to illustrate the global behavior of

our deterministic model.

3.1. Dynamical system

To derive the dynamical system of our deterministic model, we set σC = σF = 0 and

rewrite the model in deviations from the fundamental value. In the process, we follow

Brock and Hommes (1997, 1998) and introduce xt = pt − p∗. Forecasts about future

prices then become

ECt [xt+1] = gxt−1 (28)

and

EFt [xt+1] = vxt−1. (29)

Moreover, we use the fact that the fundamental price satisfies (1+r)p∗t = Et[p
∗
t+1+yt+1]

and express the equilibrium equation as

xt =
1

(1 + r)
(WC

t E
C
t [xt+1] +WF

t E
F
t [xt+1]), (30)
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where

WC
t =

Exp[βUCt ]

Exp[βUCt ] + Exp[βUFt ]
(31)

and

WF
t = 1−WC

t . (32)

Note that setting noise terms equal to zero implies that forecasting rules only consist

of the deterministic parts of the two types of belief that are equal across agents. Thus,

agents either follow a representative technical or a representative fundamental prediction

rule. Since agents’ profits for the two types of belief are then identical, the two fitness

measures are equal across agents. These can also be rewritten in deviations from the

fundamental value as

UCt = (1− µ)(xt − (1 + r)xt−1)
ECt−1[xt]− (1 + r)xt−1

aσ2
+ µUCt−1 (33)

and

UFt = (1− µ)(xt − (1 + r)xt−1)
EFt−1[xt]− (1 + r)xt−1

aσ2
+ µUFt−1. (34)

Of course, equal fitness measures imply equal discrete choice probabilities, which is why

the relative number of chartists and fundamentalists can also be defined by (31) and

(32), respectively.

Finally, we introduce the difference in fractions mt = WF
t −WC

t = Tanh(β2 (UFt −

UCt )) and summarize the model’s deterministic skeleton by the three-dimensional non-

linear system

S :


xt = 1

(1+r) (
1−mt−1

2 gxt−1 + mt−1+1
2 vxt−1)

yt = xt−1

mt = Tanh[β2 {(1− µ)(xt − (1 + r)xt−1) vyt−1−gyt−1

aσ2 + µ 2ArcTanh[mt−1]
β }]

, (35)

where yt = xt−1 is an auxiliary variable.6

6Since WC
t + WF

t = 1 and mt = WF
t −WC

t , we have WC
t = 1−mt

2
and WF

t = 1+mt
2

. Moreover,

UFt−1 − UCt−1 can be rewritten as
2ArcTanh[mt−1]

β
.
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3.2. Steady states and local asymptotic stability

We are now ready to explore the existence and stability of steady states of (35). Our

first set of results is summarized by:

Proposition 1. Assume r > 0, g > 1, 0 < v < 1 and 0 ≤ µ < 1. Let m∗ = g+v−2(r+1)
g−v ,

x∗2/3 = ±
√

2aσ2ArcTanh[
g+v−2(r+1)

g−v ]

βr(g−v) and y∗2/3 = x∗2/3. Then:

(i) For g < 2(r + 1)− v, S1 = (0, 0, 0) is the unique, locally stable (fundamental) steady

state.

(ii) At g = 2(r + 1) − v, a pitchfork bifurcation occurs, i.e. two additional (non-

fundamental) steady states are created.

(iii) For g > 2(r+ 1)− v, there exist three steady states S1 = (0, 0, 0), S2 = (x∗2, y
∗
2 ,m

∗)

and S3 = (x∗3, y
∗
3 ,m

∗); the (fundamental) steady state S1 is unstable.

Proof. It follows from the pricing equation that a steady state must satisfy

(1 + r)x∗ =
1−m∗

2
gx∗ +

m∗ + 1

2
vx∗,

which implies that x∗ = 0 or m∗ = g+v−2(r+1)
g−v . For x∗ = 0, we have y∗ = 0 and obtain

ArcTanh[m∗](1 − µ) = 0 from the equation of the difference in fractions. Since µ 6= 1,

it follows that the steady-state difference in fractions is m∗ = 0. Moreover,

m∗ = Tanh[
β

2
{(1− µ)(x∗ − (1 + r)x∗)

vx∗ − gx∗

aσ2
+ µ

2aσ2ArcTanh[m∗]

β
}], (36)

where m∗ = g+v−2(r+1)
g−v , yields

x∗
2

=
2aσ2ArcTanh[ g+v−2(r+1)

g−v ]

βr(g − v)
.

Note that −1 < m∗ < 0 for (r + 1) < g < 2(r + 1) − v, while we have 0 < m∗ < 1

for g > 2(r + 1) − v. However, equation (36) only has two solutions ±x∗ if g > 2(r +

1) − v. Thus, the fundamental steady state is given by S1 = (0, 0, 0) and there exist

two non-fundamental steady states S2 = (x∗, y∗,m∗) and S3 = (−x∗, y∗,m∗), where

m∗ = g+v−2(r+1)
g−v and x∗ is the positive solution of (36) if and only if g > 2(r + 1)− v.

13



From the Jacobian of the fundamental steady state S1, i.e.

J(S1) =


g+v

2(1+r) 0 0

1 0 0

0 0 µ

 ,

we obtain λ1 = g+v
2(1+r) , λ2 = 0 and λ3 = µ. Since 0 ≤ µ < 1, the eigenvalues λ2

and λ3 always lie inside the unit circle. The eigenvalue λ1 is larger than +1 for g >

2(r + 1) − v, the case for which two additional steady states exist. Thus, we have a

pitchfork bifurcation at g = 2(r+ 1)− v and the first eigenvalue lies in the interval (0, 1)

if and only if g < 2(r + 1)− v.

As stated above, if g < 2(r + 1) − v, the deterministic skeleton of our model has

a unique, locally stable steady state where the price equals its fundamental value. We

therefore call this the fundamental steady state. Since we have pt = p∗ or x∗ = 0 at S1,

both predictors yield the same forecast and the difference in profits is zero. Hence, half

of the agents use the technical forecasting rule and the other half use the fundamental

forecasting rule, i.e. WC
t = WF

t = 0.5 or m∗ = 0. However, when chartists extrapolate

more strongly, i.e. when parameter g increases to g = 2(r+1)−v, a pitchfork bifurcation

occurs. The fundamental steady state S1 then becomes unstable and two additional non-

fundamental steady states S2 and S3 are created. The next result is:

Proposition 2. Suppose there exist the non-fundamental steady states S2 = (x∗2, y
∗
2 ,m

∗)

and S3 = (x∗3, y
∗
3 ,m

∗) as in Proposition 1, i.e. g > 2(r+ 1)− v. For values of g that are

slightly larger than 2(r + 1) − v, S2 and S3 are locally stable. However, if g is further

increased, the non-fundamental steady states undergo a Neimark-Sacker bifurcation and

become unstable.

Proof. The characteristic polynomial of the Jacobian computed at the non-fundamental

steady states S2 and S3 is given by

p(λ) = λ3 + λ2(Z − 1− µ) + λ(µ− Z − rZ)− rZ, (37)
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where

Z =
−2(g − r − 1)(1 + r − v)(1− µ)ArcTanh[ g+v−2(r+1)

g−v ]

r(1 + r)(g − v)
.

At the pitchfork bifurcation value g = 2(r + 1) − v, we have m∗ = 0 and therefore

Z = 0. The characteristic equation (37) then yields λ1 = 1, λ2 = 0 and λ3 = µ.

When parameter g increases slightly, Z becomes negative and we obtain three real

eigenvalues inside the unit circle. Thus, the two non-fundamental steady states are

stable for g slightly larger than 2(r + 1) − v. For g → ∞, however, we have Z → −∞,

which implies that one of the eigenvalues must cross the unit circle for some critical

value of g and S2/3 = (x∗2/3, y
∗
2/3,m

∗) become unstable. Since p(1) = −2rZ > 0 and

p(−1) = 2(Z − µ − 1) < 0, two eigenvalues must be complex (see Brock and Hommes,

1998). Thus, the non-fundamental steady states become unstable by a Neimark-Sacker

bifurcation.

Hence, for g > 2(r + 1) − v, there also exist two non-fundamental steady states

S2/3 = (x∗2/3, y
∗
2/3,m

∗), where x∗2/3 = ±
√

2aσ2ArcTanh[ g+v−2(r+1)
g−v ]/βr(g − v) and

m∗ = g+v−2(r+1)
g−v . While one of these non-fundamental steady states is above the funda-

mental steady state, the other is below it. Moreover, S2 (S3) increases (decreases) with

parameter g. This can be explained as follows. When chartists extrapolate the price

deviation more strongly, prices diverge further from the fundamental value, i.e. x∗2 (x∗3)

increases (decreases). Since fundamental analysis then becomes more attractive, more

and more speculators choose the fundamental predictor, implying that m∗ increases.

At some critical value for g, however, the two non-fundamental steady states become

unstable by a Neimark-Sacker bifurcation, in which invariant circles around each of the

two non-fundamental steady states arise.7

7Of course, other model parameters may also influence the stability of our deterministic model
dynamics. For instance, decreasing values of v and increasing values of r may stabilize the system. In
contrast to Brock and Hommes (1998), the intensity of choice has no effect on the stability of our steady
states. Nevertheless, increasing values of β do reduce the price deviation. This is intuitively clear, since
higher values for the intensity of choice make speculators more sensitive in selecting the most profitable
forecast. As more speculators then opt for fundamental analysis, the price deviation decreases.
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Figure 1: Bifurcation diagram for parameter g. Parameters are r = 0.1, v = 0.8, µ = 0.5, aσ2 = 1,
β = 3.5 and 1.3 ≤ g ≤ 1.6.

3.3. Numerical illustration

To illustrate our analytical results, we set r = 0.1, v = 0.8, µ = 0.5, aσ2 = 1 and

β = 3.5 and show in Figure 1 the dynamical behavior of our deterministic model for

increasing values of g. As can be seen, the fundamental steady state is stable for g <

2(r + 1) − v = 1.4. At g = 1.4, x∗ = 0 becomes unstable and two additional steady

states emerge. For 1.4 < g < 1.58, our dynamical system may converge to the positive

or to the negative non-fundamental steady state. As g increases further, the two non-

fundamental steady states also become destabilized and quasi-periodic dynamics arises,

as illustrated in Figure 2.

Figure 2 shows the dynamics of our deterministic model for g = 1.6. While the

first two panels show time series of price deviations and differences in fractions, the

third panel illustrates the attractors in the phase space.8 It can be seen from the top

panel that prices either cycle around the positive or around the negative unstable non-

8Note that the eigenvalues of (37) can now be computed and are given by λ1 = −0.041, λ2 =
0.988 + 0.289i and λ3 = 0.988− 0.289i. Since |λ2/3| = 1.06, the complex eigenvalues have just crossed
the unit circle and Figure 2 illustrates a situation shortly after the Neimark-Sacker bifurcation.
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Figure 2: Dynamics of our deterministic skeleton for g = 1.6. The first two panels illustrate the evolution
of price deviations and differences in fractions for 500 periods, while the third panel shows phase plots
in the (xt, mt) plane. Parameters are r = 0.1, v = 0.8, µ = 0.5, aσ2 = 1 and β = 3.5.

fundamental steady state, given by x∗2 = 1.35 and x∗3 = −1.35. The second panel shows

the corresponding time series of the difference in fractions. Note that m∗ = 0.25 and

that only one line is visible as the two time series overlap. The attractors plotted in the

third panel also reveal that there are coexisting invariant circles around each of the two

unstable non-fundamental steady states. However, if g is increased further, the dynamics

quickly explodes and prices diverge to infinity.
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4. Stochastic dynamics

Since our model is able to explain the stylized facts of stock markets, we begin this section

by briefly reviewing some of those statistical properties. Furthermore, we introduce some

summary statistics to measure the stylized facts we seek to match. In Section 4.2., we

report our estimation results and discuss the performance of our model. In Section 4.3.,

we show a snapshot of our dynamics and explain how the model functions.

4.1. Stylized facts of stock markets

As is well known, the dynamics of stock markets is characterized by (i) bubbles and

crashes, (ii) excess volatility, (iii) fat-tailed return distributions, (iv) serially uncorre-

lated returns and (v) volatility clustering. Statistical properties of financial markets are

surveyed, for instance, by Mantegna and Stanley (2000), Cont (2001), Lux and Ausloos

(2002) and Lux (2009). To illustrate these five universal features, we use a time series of

the S&P500 stock market index that runs from January 1, 1991 to December 31, 2016

containing 6550 daily observations and show the dynamics in Figure 3. Moreover, we

quantify these features by a number of summary statistics, i.e. “moments”, which we

present in Table 1.

In the top panel of Figure 3, we depict the daily evolution of the S&P500 between

1991 and 2016. As can be seen, stock prices show strong price appreciations as well

as severe crashes. The corresponding return time series is plotted in the second panel.

It reveals that stock prices fluctuate strongly and that extreme price changes of up to

11 percent exist. To measure overall volatility, we compute the standard deviation of

returns and obtain a value of V = 1.13 percent per day. The left panel of the third

row compares the log probability density functions of normalized returns (purple) and

standard normally distributed returns (gray). The distribution of empirical returns ob-

viously possesses a higher concentration around the mean, thinner shoulders and again

more probability mass in the tails than a normal distribution with identical mean and

standard deviation. Since we also want to quantify the fat-tail property, we use the

Hill tail index estimator (Hill 1975) and plot it as a function of the largest returns (in

percent) on the right-hand side. Note that lower values for the tail index imply fatter

tails. For instance, estimates on the largest 5 percent of the observations yield a tail
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Figure 3: The dynamics of the S&P500. The panels show, from top to bottom, the evolution of
the S&P500 between 1991 and 2016, the corresponding returns, the log probability density functions
of normalized returns (purple) and standard normally distributed returns (gray), the Hill tail index
estimator as a function of the largest returns and the autocorrelation functions of raw returns (purple)
and absolute returns (gray), respectively.
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index of 2.99. However, when we compute the Hill tail index at the 5 percent level for

normally distributed returns with T = 6550 and identical mean and standard deviation,

we obtain a value of 6.49.

V α5.0 ac r1 ac r2 ac |r3|
Measured 1.131 2.993 −0.059 −0.041 0.275
Lower bound 0.929 2.571 −0.105 −0.098 0.228
Upper bound 1.341 3.749 −0.017 0.011 0.325

ac |r6| ac |r12| ac |r25| ac |r50| ac |r100|
Measured 0.292 0.272 0.215 0.170 0.127
Lower bound 0.234 0.217 0.171 0.135 0.095
Upper bound 0.358 0.335 0.266 0.208 0.165

Table 1: Moments of the S&P500. The first lines contains estimates of the returns’ standard deviation
V , the tail index α5.0, the autocorrelation coefficients of raw returns ac ri for lags 1 and 2, and the
autocorrelation coefficients of absolute returns ac |ri| for lags i ∈ {3, 6, 12, 25, 50, 100}. The second and
third lines show the lower and upper boundaries of the 95% confidence intervals around the summary
statistics that are reported in the first lines. Estimates are based on a time series ranging from January
1, 1991 to December 31, 2016 that contains 6550 daily observations.

In the bottom panel of Figure 3, we show the autocorrelation functions of raw (purple)

and absolute (gray) returns for the first 100 lags. The gray lines represent the 95 percent

confidence bands. As the autocorrelation of raw returns is insignificant for almost all

lags, it follows that the evolution of the S&P500 is close to a random walk. In contrast,

absolute returns reveal autocorrelation coefficients that are highly significant for more

than 100 lags, which implies a temporal persistence in volatility. It also becomes clear

from the second panel of Figure 3 that periods of high volatility alternate with periods

of low volatility. To quantify the absence of autocorrelation in raw returns and the long

memory in absolute returns, we choose to estimate the autocorrelation coefficients of

raw returns for lags 1 and 2, and the autocorrelation coefficients of absolute returns for

lags 3, 6, 12, 25, 50 and 100. These summary statistics are presented together with the

two described above in the first lines of Table 1.

In the second and third lines of Table 1, we report for all ten moments the lower and

upper boundaries of the 95 percent confidence intervals of their bootstrapped frequency

distributions. Due to the long-range dependence in the return time series, we follow
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Winker et al. (2007) and use a block bootstrap to compute the frequency distributions

of the returns’ standard deviation and the tail index. To this end, we subdivide the

time series of the S&P500 into 26 blocks with 250 daily observations each, construct a

new time series from 26 random draws (with replacement) and estimate the values of V

and α5.0 from this new block bootstrapped time series. By repeating this 5000 times,

we obtain the frequency distributions of the two statistics from which the lower and

upper boundaries of the 95 percent confidence intervals can be computed. For the other

distributions, however, we choose another bootstrap approach. Franke and Westerhoff

(2016) highlight the fact that the long-range dependence in the return time series is al-

ways interrupted when two non-adjacent blocks are pasted; they suggest sampling single

days together with the past data points required to compute lagged autocorrelations.

Following their argument, we randomly draw 6550 observations with their consecutive

data points from the S&P500 time series, compute the lagged autocorrelations, repeat

this 5000 times and obtain their distributions.

4.2. Estimation and model performance

Recall that the summary statistics (moments) were introduced to quantify the stylized

facts we seek to match. Of course, the simulated moments should be as close as possible

to the empirical moments. To this end, we employ the method of simulated moments

to estimate our model. For pioneering contributions in this direction, see, for instance,

Gilli and Winker (2003), Winker et al. (2007) or Franke (2009). As in Franke and

Westerhoff (2012), we use the concept of a joint moment coverage ratio and aim to

find the parameter setting that maximizes the fraction of simulation runs for which our

simulated moments jointly fall into the 95 percent confidence intervals of their empirical

counterparts. To be more precise, we count the number of simulation runs for which

all ten moments are contained in the empirical intervals and define the corresponding

percentage as the joint moment coverage ratio. The estimation then searches for the

parameter setting that maximizes the JMCR score.

However, not all of our model parameters are included in our estimation procedure.

For instance, the value for the interest rate of the risk-free asset can be derived from

empirical data. Since the current annual percentage rate is about 0.05, we obtain r =

0.0002 for the daily rate of return. Moreover, the dynamics of our model does not
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depend on the level of the fundamental value, which is why we set p∗ = 10, implying

that ȳ = 0.002. To further reduce the number of parameters, we fix N = 300 and set

aσ2 = 1 as in Brock and Hommes (1998). We also make the simplifying assumption

that the correlations of technical and fundamental random trading signals are equal, i.e.

ρC = ρF . Hence, there remain seven model parameters for which the maximization of

the joint moment coverage ratio yields the following results:

g = 1.001, v = 0.989, σC = 0.0265, σF = 0.004607,

ρC = ρF = 0.78, β = 1550 and µ = 0.992.

The corresponding value of the JMCR is given by 0.324, i.e. in 32.4 percent of the

simulation runs all of our simulated moments drop in their empirical intervals. Given

that our objective function is based on the joint matching of ten different moments, such

a ratio may be deemed as quite remarkable.

V α5.0 ac r1 ac r2 ac |r3|
JMCR 0.904 0.794 0.966 0.974 0.936

0.324 ac |r6| ac |r12| ac |r25| ac |r50| ac |r100|
0.944 0.930 0.856 0.704 0.576

Table 2: Performance of the model. The table shows the joint moment coverage ratio (JMCR) and
the fractions of the individual moments’ matching. Estimations are based on 500 simulation runs with
6550 observations each. Parameters are r = 0.0002, F = 10, ȳ = 0.002, aσ2 = 1, N = 300, g = 1.001,
v = 0.989, σF = 0.004607, σC = 0.0265, ρC = ρF = 0.78, β = 1550 and µ = 0.992.

In Table 2, we show how well our model matches the ten individual moments. For

instance, the volatility and the tail index fall in 90.4 percent and 79.4 percent of cases

in the 95 percent confidence intervals of their empirical counterparts. The scores are

even better for the autocorrelation coefficients of raw returns at lags 1 and 2.9 These

are given by 96.6 and 97.4 percent, respectively. As can be seen, the model’s ability to

generate persistence in volatility is also very good for lags 3, 6, 12 and 25. For higher

9Note that the empirical intervals of the raw returns’ autocorrelations are centered around ac r1 =
−0.059 and ac r2 = −0.041. Since a stock market’s return dynamics usually shows no sign of pre-
dictability, we adjusted the empirical intervals of the two summary statistics by setting their lower and
upper boundaries to −0.04 and 0.04, ensuring that we have bands that are symmetric around zero and
almost equally sized as those computed from the bootstrapped distributions.
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lags, however, autocorrelations of absolute returns are slightly underestimated in some

of the simulation runs, which is why we obtain lower scores for lags 50 and 100. Note

that we also computed the average moment matching score for this parameter setting

and obtained an astounding value of 85.8 percent, i.e. on average, we match 85.8 percent

of the empirical moments in a simulation run.

Note that our model parameters were identified by a multi-dimensional grid search

in a predefined parameter space. Hence, we cannot rule out the existence of better

performing parameter settings. However, any change in one of our estimated model

parameters would result in a lower JMCR score, implying that we have found at least

a local maximimum of the joint moment coverage ratio. To visualize this, we show in

Figure 4 how the model performance depends on our model parameters. For instance,

the first panel reveals that the JMCR score decreases if we deviate from g = 1.001.

Obviously, this is also true for v = 0.989, σF = 0.004607, σC = 0.0265, β = 1550,

µ = 0.992 and ρC = ρF = 0.78.10 The last panel shows how the number of speculators

influences our model performance. Recall that parameter N was not included in our

estimation procedure and that we optimized our parameter setting for N = 300. But,

as one can see, our model also generates high JMCR scores for other values of N .

To illustrate the performance of our model, we depict a representative simulation

run with 6550 observations in Figure 5. Since we want to compare our model dynamics

directly with the dynamics of the S&P500, we use the same design as in Figure 3. Thus,

the first panel shows the evolution of prices in the time domain. Apparently, the price of

the risky asset fluctuates erratically around its fundamental value p∗ = 10 and there are

a number of periods in which prices either appreciate or depreciate strongly. Hence, our

simulated price dynamics can also be characterized by bubbles and crashes. However,

there is no long-run upward trend in prices since we assume that the fundamental value

is constant. The second panel shows the corresponding return time series and reveals

that price volatility is high. There are extreme price changes of up to 8.4 percent and

the standard deviation of our simulated returns is given by 1.2 percent, i.e. our model

resembles the overall volatility of the S&P500 quite well. From the comparison of the log

10Note that our estimation results are in line with the empirical evidence reported in the introduction.
While agents’ forecasts are heterogeneous, their expectations are also correlated to some degree.
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Figure 4: Parameters’ impact on the model’s performance. The panels reveal how the JMCR score
depends on parameters g, v, σF , σC , β, µ, ρC = ρF and N . The computation of the JMCR is always
based on 500 simulation runs.

probability density functions of normalized (purple) and standard normally distributed

(gray) returns, exhibited in the left panel of the third row, it becomes evident that our

model also gives rise to fat tails. As can be seen, extreme returns occur more frequently

than in the case of a normal distribution. This is also confirmed by estimates of the

Hill tail index. In the right panel of the third row it can be observed, for instance, that
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Figure 5: The dynamics of the model. The panels show, from top to bottom, the evolution of the
price, the returns, the log probability density functions of normalized returns (purple) and standard
normally distributed returns (gray), the Hill tail index estimator as a function of the largest returns
and the autocorrelation functions of raw returns (purple) and absolute returns (gray), respectively. The
simulation run is based on 6550 observations.
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we obtain a tail index of 3.51 at the 5 percent level. The bottom panel presents the

autocorrelation functions of raw (purple) and absolute (gray) returns. As in the case

of the S&P500, raw returns are basically serially uncorrelated while absolute returns

display significant correlations for more than 100 lags.

4.3. Functioning of the model

Now that we have shown that our model is able to replicate the statistical properties

of the daily behavior of the S&P500 quite well, we want to explain how it functions.

For this purpose, we use the same simulation run depicted in Figure 5 but focus only

on the period between observations 2500 and 3700. The dynamics during this time

is illustrated in Figure 6. The panels show, from top to bottom, the evolution of the

price, the corresponding returns and the weight of chartists, respectively. As can be

seen, the weight of chartists is initially relatively low. Since the market is dominated

by fundamentalists, the price fluctuates around its fundamental value p∗ = 10 and the

market’s price volatility is moderate. The impact of technical analysis suddenly starts

to increase and prices slowly diverge from the fundamental value. Since it becomes

profitable to rely on the technical forecasting rule, more and more agents choose to

be a chartist and their weight increases further. This causes the price depreciation to

continue and volatility goes up. Around period t = 2900, the weight of chartists has

increased to such an extent that the fundamental steady state becomes unstable.

Recall from our deterministic analysis that the fundamental steady state is locally

stable if and only if 0.5g + 0.5v < (r + 1). Given the estimated parameters g = 1.001,

v = 0.989 and r = 0.0002, this condition is obviously satisfied. Out of equilibrium,

however, the stability condition can be expressed as WC
t−1g + (1 −WC

t−1)v < (r + 1)

from which it follows that our system diverges from p∗ = 10 if WC
t−1 ≥ 0.93. The

gray line depicted in the bottom panel of Figure 6 represents this relation. Thus, as

soon as the weight of chartists exceeds this critical value, the price disconnects from its

fundamental value. In fact, this is exactly what we observe. Between observations 2900

and 3050, the market share of chartists fluctuates around the threshold and there are

even longer phases in which their weight is clearly larger than 0.93. As can be seen,

asset prices crash during this period and mispricing increases further. However, agents’

expectations are also affected by random shocks due to which our system may jump
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Figure 6: Functioning of the model. The panels show, from top to bottom, the evolution of the price,
the corresponding returns and the weight of chartists between periods 2500 and 3700 of the simulation
run depicted in Figure 5, respectively.

between stable and unstable phases. In particular, the market re-enters the region for

which the fundamental steady state is attracting around period t = 3050. As mispricing

decreases, the fundamental forecasting rule is now more attractive and an increasing

number of agents switch to fundamental analysis. This explains why the downward trend

comes to a halt and reverses direction. Obviously, prices revert towards the fundamental
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value and volatility decreases again.

As the price approaches its fundamental value, the profitability of the fundamental

expectation rule decreases and the story repeats itself. The market share of chartists

starts to recover and prices continue to rise. Since chartists make higher profits, their

market share increases further and a bubble emerges. During this process, the fun-

damental steady state becomes unstable again. Note, however, that the duration and

amplitude of bubbles and crashes varies considerably. The destabilizing behavior of

chartists also has different effects and extreme price changes may occur. In period

t = 3265, for instance, the price increases by 8.4 percent. Such an extreme return occurs

if the market impact of chartists is high and if they receive a strong trading signal (either

because of the deterministic part of their expectation rules of because of the correlated

random shocks reflecting the heterogeneity of their expectations). All in all, the dynam-

ics is driven by the interplay between nonlinear endogenous forces and random shocks

affecting agents’ expectations.

5. Conclusions

In this paper, we generalize the seminal model by Brock and Hommes (1998) by consid-

ering that all agents follow their own individual technical and fundamental expectation

rules. While their forecasts may be correlated to some degree, all agents have different

expectations about future asset prices. As a result, the agents’ demands, their rules’

fitness and, consequently, their discrete choice probabilities differ. In this sense, we pro-

vide an agent-based microfoundation for the model by Brock and Hommes (1998). Since

heterogeneity is a key characteristic of financial markets, such a model extension seems

to be worthwhile.

Moreover, we demonstrate that our model version can explain the stylized facts of

financial markets. By estimating our model using the method of simulated moments,

we find that our approach matches the daily behavior of the S&P500 quite well. In par-

ticular, our analysis reveals that we match in 33 percent of the simulation runs all ten

summary statistics that are used to quantify the main stylized facts of financial markets.

Crucial for the striking performance of our model is the assumption that agents have

heterogeneous expectations, i.e. the model’s performance would weaken dramatically if
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agents’ choices were restricted to a representative technical and a representative funda-

mental expectation rule. By providing empirical support for the Brock and Hommes

(1998) model on the basis of daily data, we also complement the studies by Boswijk et

al. (2003) and Hommes and in’t Veld (2017), which rely on yearly and quarterly data,

respectively.

Finally, our approach also offers a novel explanation for the intricate behavior of

financial markets. Our analytical results indicate that the model’s fundamental steady

state is locally stable for the estimated parameter setting. Out of equilibrium, however,

the market impact of technical expectation rules may temporarily increase and render the

fundamental steady state unstable. Suppose, for instance, that the asset price increases

above its fundamental value. In such a situation, technical expectation rules tend to be

more profitable than fundamental expectation rules. As the market impact of technical

expectation rules grows, the momentum of the price increase is likely to continue and

may create a bubble. Such a development is usually accompanied by a period of higher

volatility and the occasional occurrence of larger price changes. Eventually, however,

the bubble comes to a halt and reverses direction. Now fundamental expectation rules

outperform technical expectation rules, and the market once again enters a more stable

phase. In particular, asset prices are driven closer towards the fundamental value, price

variability tends to shrink and extreme price changes are observed less frequently. Thus,

the dynamics switch back and forth between stable and unstable phases. Due to the

large heterogeneity of the expectation rules applied, asset price changes are serially

uncorrelated. Of course, agents’ disagreement about the future direction of the market

keeps them trading and is thus responsible for the excessive price volatility.

Our approach may be extended in various directions. First of all, we assume that

the correlation between speculators’ expectation rules is constant. One interesting ex-

tension of our model may be to consider a time-varying correlation. Keynes (1936)

already argued that people tend to herd more strongly in periods with heightened uncer-

tainty. Hence, the correlation between speculators’ expectation rules may, for instance,

be conditioned on market uncertainty. Moreover, a speculator’s rule selection behavior

is assumed to depend on the experience he has his own rules. Alternatively, one could

consider speculators talking to each other and basing their rule selection, i.e. the choice
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between extrapolative and regressive expectation rules, on the average profitability of

these rules within their peer group. Speculators’ rule selection may furthermore depend

on herding effects or on market conditions such as observed mispricing. From an econo-

metric perspective, it may also be worthwhile estimating our model for other financial

markets. One advantage of our estimation strategy is that it does not rely on any as-

sumption about a market’s fundamental value, which is, obviously, difficult to quantify.

Nevertheless, one may follow Shiller’s (2015) approach on how to compute the funda-

mental value of the S&P500. In doing so, one may add a distortion measure to the list

of moments and seek to match the S&P500’s boom-and-bust dynamics.

However, we would like to conclude our paper by pointing out once again that hetero-

geneity matters in financial markets. By allowing for more heterogeneity, we show that

the seminal asset-pricing model by Brock and Hommes (1998) becomes not only more

realistic but also has the potential to explain the daily behavior of financial markets.
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